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Abstract  

Modern steganographic methods, which conceal the existence of communication, are needed 
to exploit contemporary modes of information exchange. Measures of performance for these 
methods are essential to compare specific algorithms and determine appropriate uses. This 
report develops a methodology for steganographic data hiding. The methodology encompasses 
derivation of a general theory of steganographic communication, including theoretical capacity 
bounds, and design of an actual data-hiding technique that used digital imagery as a cover. The 
technique promotes maximization of payload, allows error-free recovery of embedded date, and 
provides some resilience to removal while concealing the existence of the embedded information 
from the observer and the observer's resources (e.g., computer). 
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1.    Introduction 

As a society, humans have continually sought new and efficient ways to communicate. 
The earliest methods included cave drawings, smoke signals, and drums. Advancements 
of civilization introduced written language, telegraph, radio/television, and, most recently, 
electronic mail. In 1998, the U.S. Postal Service delivered 107 billion first-class items, a 
modest amount compared to the estimated 4 trillion e-mail messages received by U.S. 
residents [1]. And this is only a fraction of what we can expect in the future. As more and 
more communication is conducted electronically, new needs, issues, and opportunities are 
born. 

At times when we communicate, we prefer that only the intended recipient have the 
ability to decipher the contents of the communication. We want to keep the message secret. 
A common solution to this problem is the use of encryption to obscure the information 
content of the message. Today, our credit card numbers are encrypted within e-commerce 
orders sent over the Internet to prevent fraud. Military battle plans and specific target 
locations may be encrypted before transmission to preserve the element of surprise during 
wartime. The documentation of a company's new product design may be encrypted to curtail 
industrial espionage. 

While encryption masks the meaning of a communication, instances exist where we would 
prefer that the entire communication process not be evident to any observer — that is, even 
the fact that communication is taking place is a secret. In this case, we want to keep 
the communication hidden. Steganographic techniques can be used to hide or cover the 
existence of communication with other data, intuitively referred to as cover data. Consider 
a sender who wants to convey information to a recipient but does not want anyone else 
to know that the two parties are communicating. The sender could use steganography to 
hide information within innocuous information — for example, a weather map that covers 
the existence of the communication. The weather map would then be made available on 
an open channel for anyone to access, but only the intended recipient would be aware of 
the hidden information and have the ability to extract it. Steganography is not meant as a 
replacement to cryptography, but rather an augmentation — information can be encrypted 
and then covertly communicated via steganographic means for added privacy. We can think 
of steganography as one more tool to convey information in a hidden manner. 

Privacy is not the only motivation for steganography. By embedding one piece of data 
inside of another, the two become a single entity, thus eliminating the need to preserve 
a link between the two different pieces of data to prevent the chance of their separation. 
One application that exhibits the advantage of this facet of steganography is the embedding 
of patient information within the medical imagery. By doing so, a permanent association 
between these two information objects is created. 

Steganography can also provide forward and backward compatibility. Consider a system, 
such as the FM radio receiver, which receives an analog communication signal. If improve- 
ments to the radio signal are made, say the addition of an in-band on-channel digital signal 
to provide better audio quality, new radio receivers would be built to take advantage of 
this enhancement [2]. However, radio stations could scarcely anticipate that everyone would 



immediately purchase this new radio, so they must use steganography to embed the new 
digital information within the analog signal, leaving traditional receivers unaware that the 
hidden signal exists. 

Additionally, information integrity can be provided using steganography to embed au- 
thentication information within the cover data. This is particularly advantageous in an age 
when the preservation and assurance of digital data is vital. 

We can also use steganography to avoid communication restrictions such as those stip- 
ulated by firewalls. Many firewalls may not allow encrypted data, if detected, to move 
freely through the wall. However, the transmission of an innocuous cover that has hidden 
steganographic information may not experience such limitations. 

A multitude of objects can serve as potential cover for steganographic communication. 
A simple written letter, a commentator's report, or a picture of a child may all seem com- 
monplace. However, tiny pin pricks embedded within the letter, specific wording of the 
commentator's speech, or the color of the child's hat in the picture can serve to indicate a 
hidden message. In today's electronic world, the prevalence of multimedia introduces rich, 
new avenues for hiding communication using digital audio and imagery. 

1.1    Problem Motivation 

In this report, we address modern steganography. Although the topic of steganography 
has existed since ancient times, and many of the general assumptions still apply today, new 
techniques that exploit contemporary technology in addition to metrics to measure their 
performance should be developed. 

Much of the recent work in steganography is in the area of invisible digital watermarking, 
motivated by the desire for copyright protection of multimedia on the Internet. The objective 
of digital watermarking is to embed a signature within a digital cover signal to signify origin 
or ownership. Once added, a watermark must be robust to removal attacks and reliably 
detected, even after typical transformations such as cropping, quantization, and scaling. 

Thus far, less attention has been focused on another type of steganography, data hiding. 
The objective of data hiding is to imperceptibly embed a significant amount of data, much 
more than that of a signature or serial number, into the cover signal. It also differs from 
watermarking by pursuing the resistance to removal to a much lesser degree. 

The potential applications for data hiding are numerous. Of course, the relay of hidden 
messages is an apparent usage, but today's technology stimulates even more subtle practices. 
In-band captioning, for example, can be used to embed textual or ancillary information 
within a cover. It can be employed to deposit creation and revision information within the 
cover data for the purpose of revision tracking, preventing the need to maintain two separate 
media. This type of consolidation could be used to join medical images with text, such as 
patient data, to promote patient safety and record consistency. Additionally, forward and 
backward compatibility information could be inserted within an audio or video signal to 
permit additional functionality such as multilingual playback while allowing legacy systems 



to continue operation. Data hiding can be utilized as a technique for authentication and 
tamperproofmg. For example, unauthorized alterations in the cover can be detected by 
hiding attribute information unique to the cover, such as the checksum of certain pixel 
values, within the cover itself. By computing the checksum at the receiver and comparing it 
to the extracted checksum, the receiver could determine whether or not the cover has been 
corrupted. 

The objective of this report is to develop a methodology for steganographic data hiding. 
The research encompasses derivation of a general theory of steganographic communication, 
including theoretical capacity bounds, and design of an actual data-hiding technique that 
uses digital imagery as a cover. The technique promotes maximization of payload, allows 
error-free recovery of the embedded data, and provides some resistance to removal while 
concealing the existence of the embedded information for observers and their resources. 

1.2    Overview of Research 

Section 2 begins the presentation of our work by reviewing ancient steganography and 
surveying relevant literature in the areas. From this review, the need for a general methodol- 
ogy along with performance metrics by which to compare steganographic algorithms becomes 
evident. In section 3, we address these needs by developing a general steganographic com- 
munication theory based on information theory. We also derive theoretical bounds for the 
capacity of a particular class of steganographic systems, those which add the embedded in- 
formation to the cover. We subsequently show how this capacity can be applied to image 
steganography, thus providing a much-needed performance metric. Section 4 introduces a 
complete system for image steganography, entitled Spread Spectrum Image Steganography, 
that adheres to our primary goals of high payload, invisibility, good signal recovery, and 
error resistance. One component of this system is a covert modulation technique that can 
function in a stand-alone manner. The steganographic capacity bounds developed in sec- 
tion 3 are used as a metric by which to gauge performance of this system. Finally, section 5 
summarizes the work and presents additional ideas to stimulate future research. 



2.    Background 

In this section, the reader is familiarized with the science of steganography. We approach 
this task by first furnishing examples from ancient history and then proceeding to current 
era. Recent research in modern steganography, with particular focus on data hiding, is then 
reviewed to provide a foundation for our work. 

2.1    Historical Examples 

Steganography is not a new science. Some of the first documented examples of steganog- 
raphy can be found in the Histories of Herodotus, where the father of history relates several 
stories from the times of ancient Greece [3]. One is that of Histiaeus, who wished to inform 
his allies when to revolt against the enemy. To do so, he shaved the head of a trusted servant 
and then tattooed a message on his scalp. After allowing time for the slave's hair to grow 
back, he was sent through enemy territory to the allies. To the observer, the slave appeared 
to be a harmless traveler passing thorough the area. However, upon arrival, the slave re- 
ported to the leader of the allies and indicated that his head should be shaved, thereby 
revealing the message. 

In ancient times, one type of writing medium was a wooden tablet covered with wax. 
A person etched letters in the wax, and when he desired to remove the writing, the wax 
was melted to a smooth surface and the tablets reused. While exiled in Persia, Demeratus 
discovered that Greece was about to be invaded and wanted to convey a message of warning. 
However, the risk of exposure was great for Demeratus, so he concealed his message by 
writing directly on the wood and then covering it with wax. The seemingly blank tablets 
were then transported to Sparta where the message was literally uncovered and his allies 
forewarned. 

A less elegant method of hidden communication was adopted by Harpagus, a Median 
noble. He disguised a messenger as a hunter and hid a message in the body of an unskinned 
hare. The hunter carried the hare as if it were recently caught. Anyone encountering the 
messenger/hunter, then would probably comment on his good fortune and be none-the- 
wiser. The message would then be delivered to the appropriate party without detection or 
interception. 

Recent times have yielded more advanced techniques. The use of invisible inks is one 
such method, where messages are written using substances that subsequently disappear. 
The hidden message is revealed using heat or certain chemical reactions. Other methods 
may employ routine correspondence, such as the application of pin pricks in the vicinity of 
particular letters to spell out a secret message. Advances in photography produced microfilm 
that was used to transmit messages via carrier pigeon. Further developments in this area 
improved film and lenses that provided the ability to reduce the size of secret messages to a 
printed period. This technique, known as the microdot, was used by the Germans in World 
War II. 



2.2    Modern Steganography 

As more of today's communications occur electronically, there have been advancements 
utilizing digital multimedia signals as vehicles for steganographic communication. These 
signals, which are typically audio, video, or still imagery, are cover signals. Schemes where 
the original cover signal is needed to reveal the hidden information are cover escrow schemes. 
They can be useful for traitor-tracing [4]. In this scenario, copies of the cover signal are 
disseminated with the assignee's identification embedded within. If illegal copies of the 
signal are acquired, the source of the copy is established by subtracting the original cover 
data from the modified signal, exposing the offender's identity. 

For many applications, it is impractical to require the possession of the unaltered cover 
signal for extraction of the hidden information. More pragmatic methods operate blindly. 
These blind schemes allow extraction of the embedded data from the modified cover signal 
without knowledge of the original cover information. Blind strategies are predominant among 
steganography of the present day. 

A block diagram of a generic blind steganographic system (stegosystem), which uses an 
image as a cover, is depicted in Figure 1. A message is embedded in a digital image by the 
stegosystem encoder, which uses a key or password. The resulting image, or stegoimage, is 
transmitted over a channel to the receiver, where it is processed by the stegosystem decoder 
using the same key. During transmission, the stegoimage can be monitored by unintended 
viewers, who will notice only the transmittal of the innocuous image without discovering the 
existence of the hidden message. 
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Figure 1. Overview of Blind Steganographic System. 

Within the past few years, there has been a surge of research in the area of digital 
steganography, whose primary objectives are imperceptibility, removal resistance, and pay- 
load (the amount of data embedded within the cover). A majority of the work in the area has 
been in the development of invisible digital watermarking, whose thrust can be attributed to 
the desire for copyright protection of digital information on the Internet because the data can 
be reproduced perfectly. The objective of digital watermarking is to embed a signature or 
serial number within a digital cover to signify ownership. Once added, it must be resistant to 



removal and reliably detected even after typical transformations. Another sector in the field 
of steganography is data hiding, where robustness to removal is secondary to the objective 
of maximizing the amount of data embedded within the cover. For both watermarking and 
data hiding, the embedded data must remain imperceptible to observers. 

2.3    Information Theory Analogies 

The act of digital steganography, also referred to as information hiding, can be character- 
ized utilizing the theories of communication [5]. The parameters of hidden communication 
can be related to the characteristics of communication systems. For instance, the maximum 
amount of hidden data that can be hidden and successfully extracted is commensurate with 
the capacity of a communication channel. The imperceptibility, or undetectability, of hidden 
data is associated with a signal-to-noise ratio (SNR). In this context, the embedded message 
represents the information-bearing signal and the cover data is viewed as noise. Contrary 
to typical communication scenarios where a high SNR is desired, a low SNR is preferred for 
steganography and other systems that desire low probability of detection and low probability 
of interception. Low SNR corresponding to lower perceptibility that signifies greater con- 
cealment of the embedded signal. Additionally, the resistance to removal of the embedded 
information is analogous to the jamming margin. The measure of jamming resistance is used 
to describe a level of resistance to removal or destruction of the embedded signal, accidental 
or intentional. 

It is not possible to simultaneously maximize removal resistance and payload capacity 
while adhering to the imperceptibility constraints (low SNR) imposed by steganography. 
Therefore, the acceptable balance of these items is dictated by the application. For example, 
data-hiding schemes forego removal resistance in favor of capacity and invisibility, whereas 
an invisible watermarking scheme, which does not require large capacity, would certainly 
advocate increased removal resistance. Finally, a steganographic scheme used as a method 
of covert communication would adopt the utmost undetectability while sacrificing resistance 
to removal and possibly capacity. 

2.4    Survey of Relevant Literature 

Digital steganography is currently an active research area, encompassing methods of 
copyright protection, image authentication, and hidden communications. Since our research 
pertains to data hiding, where emphasis is placed upon invisibility and the maximization of 
payload, we limit our discussion to steganographic methods with these commonalities. 

2.4.1    Existing Methods 

A simple method of data hiding involves the manipulation of the least significant bit 
(LSB) plane of the data. Various techniques, such as direct replacement of the cover LSBs 
with message bits or an arithmetic combination between the two, are used. Several examples 



of LSB schemes can be found in Schyndel et al, Wolfgang et al., and Machado [6, 7, 8]. LSB 
manipulation software has been written for a variety of image formats and can be found in 
Mildbrandt [9]. These methods typically achieve both high payload and low perceptibility. 
However, because the fact that the data are hidden in the LSB may be known, LSB methods 
are vulnerable to extraction by unauthorized parties. 

There are, of course, many approaches that function as cover escrow schemes, where it 
is necessary to possess the original cover signal in order to retrieve the hidden information. 
Examples of such schemes can be found in Cox et al, Podilchuk et al., and Swanson et 
al. [10, 11, 12]. Due to the fact that they place impractical escrow requirements on part of 
the recipient, we only consider the schemes of particular interest to the extent that they can 
be made to function blindly. 

Several procedures for data hiding in multimedia can be found in Bender et al. [13]. One 
of these, entitled Patchwork, alters the statistics of the cover image. First, pairs of image 
regions are selected using a pseudorandom number generator. Once a pair is selected, the 
values of the pixel are altered so that the relationship between the regions reflect the hidden 
data. For instance, if all pixels of the first selected region are greater than those of the 
second, the hidden data bit is equal to 1. Although the modification is typically small and 
not perceptible, it is not restricted to the LSB. This scheme is somewhat robust to removal 
but has low payload. 

Smith and Comiskey present several spread spectrum data-hiding methods [5]. These 
techniques utilize the binary message data, &,- € {-1,1}, to modulate a carrier signal, <&, 

S(*,y) = EM.-(*,y). (!) 
i 

In the ideal case, the carried signal is a basis function that is orthogonal to the cover image 
iV. In reality, the two may not be completely orthogonal, 

£&(s,y)i\r(*,?0«o. (2) 

The embedded signal, S, is then added to the cover image, JV, to construct the stegoimage, 

D, 
D{x,y) = S(x,y) + N{x,y). (3) 

The message is extracted via cross correlation between the stegoimage and the carrier re- 
generated by a local reference; hence, cover image escrow is unnecessary. 

0,-= ££>(*, y)&(*,y). (4) 
x,y 

A thresholding operation is performed on o; to determine the binary value of the embedded 
data bits. They are able to hide and recover 100 bits of information in a 320-pixel x 320-pixel 
grayscale image, an information rate (information bits/cover bits) of 0.0001. 

A data-hiding scheme using the statistical properties of dithered imagery, images that 
represent each pixel value with a pattern of dots, is proposed by Tanaka, Nakamura, and 



Matsui [14]. With this method, the dot patterns of the ordered dither pixels are controlled 
by the information bits to be concealed. This system accommodates 2 kilobytes of hidden 
information for a binary 256 x 256 image, yielding a payload of 1 information bit to 4 cover 
image bits (information rate of 0.25). An information rate of 0.1666 was obtained for trilevel 
images of the same size. The method has high payload but is restricted to dithered images 
and is not resistant to errors in the stegoimage. 

Davern and Scott present an approach to image steganography utilizing fractal image 
compression operations [15]. The fractal image compression process splits the image into 
blocks, and those that are visually similar are identified. One bit of steganographic data 
is hidden by transforming one similar block into an approximation for another and then 
storing the approximation in the position of the original block in the stegoimage. The data 
are decoded using a visual key that specifies the position of the regions containing the hidden 
data. Unfortunately, the amount of data that can be hidden using this method is small (1 
bit for each block) and easily corrupted. Additionally, the search for similar blocks in the 
encoder and the comparison process in the decoder are both computationally expensive 
operations. 

Recent research by Swanson, Zhu, and Tewfik [16] utilizes an approach of perceptual 
masking to exploit characteristics of the human visual system (HVS) for data hiding. Per- 
ceptual masking refers to any situation where information in certain regions of an image 
is occluded by perceptually more prominent information in another part of the scene [17]. 
This masking is performed in either the spatial or frequency domain using techniques simi- 
lar to Cox et al. [10] and Smith and Comisky [5] without cover image escrow. The payload 
potential of the system is not quantified. 

A pertinent data-hiding technique using audio is presented in Neubaur, Herre, and Bran- 
denburg [18]. This method provides a channel to convey hidden data within an uncompressed 
audio stream using direct-sequence spread spectrum binary phase shift keying modulation. 
An antipodal pseudorandom noise sequence (+1,-1 in this case) is generated and multiplied 
by the antipodal message bits to construct the embedded signal. The embedded signal is 
then up-converted to achieve a spectral shift such that its maximum contribution is fixed. 
Masking techniques similar to those proposed in Swanson, Zhu, and Tewfik [16] are then 
applied to derive weights to the embedded signal, which is then added to the audio samples. 
The decoder consists of a matched filter, synchronizer, and threshold decision unit. The 
matched filter is designed to match the pseudorandom noise sequence used for encoding. 
The output of the matched filter is thresholded to determine the value of the message bit. 
The average resulting payload for this system is 0.0007 information bits to audio bits, with 
an average message bit error rate of 0.05. 

Westfeld and Wolf present a steganographic method for video conferencing [19]. They 
describe a system that embeds data into video that has undergone lossy compression via an 
H.261 video conferencing system [20]. The message bit is hidden by altering the phase of 
quantized DCT coefficients. Naturally, the payload of this system is dependent upon the 
characteristics of the video, and the quality of the video with the embedded data is difficult 
to estimate. 



A method of hiding speech in video is presented in Mukherjee, Chae, and Mitra [21]. 
This data-hiding technique embeds speech data, which has been compressed using vector 
quantization, into a digital video signal. Each video frame is transformed by an orthogonal 
wavelet transform [22]. The vector-quantized speech indices are then embedded into the 
wavelet coefficients. To make this scheme blind, the original video is altered by zeroing 
out the coefficients in one or more of the high-high bands and inserting the hidden data 
in this location of the transformed video fame. This alteration promotes extraction of the 
hidden data without knowledge of the original because the location of the hidden data is 
known. The video data is then inversely transformed before distribution. In the example 
for Mukherjee et al., they embed a quantized speech signal within a video stream and then 
attempt to corrupt the hidden data by compressing the stream using H.263 video coding [23]. 
The speech recovered after compression was deemed intelligible by the authors. 

2.4.2    Existing Metrics 

In data hiding, we have two primary objectives: the embedded data must be imperceptible 
to the observer, including the observer's resources such as computer analysis, and it should 
have the maximum payload possible. 

It is difficult to quantify how imperceptible embedded data is. In the case of image 
steganography, the typical observer's detection resources include the HVS and, potentially, 
computer analysis. For most of the methods presented in the previous subsection using 
imagery, the imperceptibility of the embedded data is indicated by illustrating the original 
image and its counterpart with embedded data so that their visual differences, if any, can be 
determined. Additionally, the mean-squared-error (MSE) (5) or peak-signal-to-noise ratio 
(PSNR) (6) between the original and the stegoimage may be presented. The original image's 
pixels are represented as 2; and the stegoimage pixels as £;. The variable L reflects the peak 
signal level (L=255 for grayscale images). 

MSE = -i 5>,- - Xif. (5) 

PSNR ^Wlog^-^. (6) 

In audio steganography, the observer uses the human auditory system as well as computer 
analysis as detection devices. As a measure of comparison, the spectrograms of the original 
and modified signals are typically presented. A spectrogram is simply a plot of the frequency 
content of an audio signal as a function of time. In some cases, the quality of the audio with 
the embedded data was measured using a perceptual audio quality measure, noise-to-mask 
ratio, or the SNR, 

SNR = °^. (7) 
v noise 

Here, o2 represents the sample variance of perspective signals.  In (7), the embedded data 
is represented as the signal and the cover data as the noise.  The SNR, which can also be 



applied to images, provides a rough estimate of perceptibility because with all things being 
equal, the higher the SNR, the more perceptible the signal [5]. 

As far as a measurement of maximum payload, or capacity, currently published works 
use the capacity of an additive Gaussian channel [5, 24, 25, 21], shown in (8), derived by 
Shannon in [26]. Here, the power of the embedded signal is presented as S and the power 
of the cover data as N. The formulation assumes that the statistics of the cover data obey 
a Gaussian distribution, which is typically not the case. Many agree, the author included, 
that better models of channel noise will yield better capacity estimates [5]. 

C = Ilog(l + f). (8) 

2.5    Summary 

In this section, we have introduced steganography, modern and historical, and provided an 
analogy with communication systems using information theory. The differing, and somewhat 
opposing, objectives of steganography have been presented. Of the two areas of steganog- 
raphy presented, watermarking strives to embed a small amount of data that is difficult to 
remove, while data hiding embeds a large amount of data that is less resistant to removal. 
Imperceptibility is a common goal in both. 

Since our work is based in the area of data hiding, we have presented recent literature on 
existing data-hiding methods for imagery, audio, and video. Additionally, we have presented 
the metrics currently used to gauge the performance of these systems. The capacity of a 
data-hiding system has been traditionally compared to that of the additive Gaussian noise 
channel. However, the cover data are not well modeled by the Gaussian distribution because 
of the dependency among adjacent samples, and a more accurate metric must be derived. 

In the text that follows, our research addresses capacity by developing a capacity metric 
that can be used as a performance criterion for the class of steganographic methods that 
add the embedded signal to the cover data. This measure, which can be used for all types of 
cover data including imagery and audio, is a more precise estimate of the maximum amount 
of payload that can be embedded and successfully extracted from the cover data. 

Additionally, we develop a novel data-hiding technique that uses digital imagery as a 
cover signal, Spread Spectrum Image Steganography (SSIS). SSIS provides the ability to 
embed a significant amount of information within digital images while avoiding detection by 
an observer. The system is resistant to errors such as those caused by a noisy transmission 
channel or lossy image compression. The hidden data is recovered, with high probability, 
error free. Finally, the system operates blindly; the proposed recipient need only possess 
a key to reveal the hidden message; otherwise, the existence of the hidden information is 
undetectable by human or today's computer analysis. 

10 



3.    Capacity of the Additive Steganographic Channel 

We introduce the characteristics of the additive steganographic channel and derive ca- 
pacity bounds by employing similarities to an arbitrary noise channel. These bounds are 
compared with the capacity of the additive white Gaussian noise (AWGN) channel. Al- 
though we concentrate on steganographic techniques that use digital imagery as a cover, the 
basic concepts presented here can also be extended to any in the class of steganographic 
systems in which the embedded signal is added to the cover data. 

A direct link between communication theory and steganography can be established if we 
think of the data to be hidden as the information-bearing signal and the cover as the channel 
through which our information is conveyed. For image steganography, where the hidden data 
is embedded within an image, we can conceive the image as the channel by which our 
information is transmitted. Continuing this analogy, the capacity of the steganographic 
channel is defined as the maximum rate at which information can be reliably transmitted 
through this channel and is expressed as the maximum rate that can be successfully hidden 
and recovered [5]. Like many communication channels, the steganographic channel may 
cause the information-bearing signal to become distorted. Additionally, the ability to detect 
the message, in both a communication and steganographic manner, is related to the SNR (7), 
where the signal is the embedded signal and the noise is the cover. From a communication 
standpoint, to reliably decode the steganographic signal, the SNR should be high. This is 
at odds with the steganographic requirement that the SNR be low, indicating concealment. 
Therefore, a balance must be established where the embedded signal can be reliably decoded 
and yet remain invisible. Be that as it may, it is noteworthy to mention that the SNR is 
only a first-order approximation of concealment in terms of detection by the HVS, and more 
accurate perceptual models are under investigation. 

3.1    The Channel Model 

We introduce the channel model and give a brief overview of capacity, the maximum rate 
that information can be transmitted by a channel incurring an arbitrarily small number of 
errors using any encoding system [27]. Consider the channel model shown in Figure 2, where 
the input into the channel is represented by the variable X and the output is represented 
by variable Y. The capacity of this channel, C, is expressed as the mutual information, i", 
between X and Y maximized by all possible distributions of the input variable X (9). 

Channel 

Figure 2. Communication Channel. 

C = max I(X;Y). (9) 
p(x) 
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Mutual information is expressed as the entropy, or information content, of X minus the 
information in X given by Y and is a symmetric entity as shown in (10). 

I(X; Y) = H(X) - H(X\Y) = H(Y) - H(Y\X). (10) 

H(X) is the entropy of the random variable X expressed as 

#P0 = -E?(*)iogp(x), (ii) 
p(x) 

and H(X\Y) is the conditional entropy of X given Y, 

H(X\Y) = -Y/Py=kEP^\v=klogPx=j]y=k. (12) 
k j 

For the noiseless channel, the channel output is equal to the channel input, Y = X; there- 
fore, H(X\Y) = 0 in (10). So, the channel capacity is equal to the maximum information in 
X over all possible distributions of X, as in (13). 

Cn0iSeless = m&xH(X). (13) 
p(x) 

Now let us look at the capacity of a channel that adds noise, represented as the variable Z, 
to the input signal such that Y = X + Z, shown in Figure 3. Using (10) and the assumption 

Figure 3. Additive Noise Channel. 

that the input signal X and the noise Z are independent, the conditional entropy of Y given 
X is equal to the entropy of the noise Z. We use this result to determine the capacity of the 
additive noise channel. 

C = max H(Y)-H(Z). (14) 
p(x) 

For the AWGN channel, X and Z are independent and Z has a Gaussian distribution 
with zero mean and variance N. The entropy of Z is then expressed as (15) [28]. 

H(Z) = ^log(2ireN). (15) 

To obtain the maximum mutual information over all possible distributions of the input, 
we assume that the channel input X also has a Gaussian distribution with some variance S. 
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Therefore, Y is the sum of the two Gaussian processes and has variance S + N. Then the 
AWGN channel capacity, Cg, conveying binary data is expressed as 

C9   =   ^log2[27re(5 + iV)]-^log2(27reiV) (16) 

1,      S + N 
=   2l0g2Hv- 

It has been shown that the mutual information between the channel input and output for 
the additive channel is at a minimum when the channel noise is Gaussian with zero mean [26]. 
Consequently, the capacity of other additive non-Gaussian noise channels is lower-bounded 
by Cg (17). Equations 17-19 list the capacity of three such channels with various noise 
distributions [29]. 

(17) 

(18) 

(19) 

3.2    Steganographic Channel Capacity 

Now let us consider steganographic systems in which the hidden information is embedded 
in some manner within a random noise signal, then added to the cover data on a sample- 
by-sample basis as in the methods described previously [5, 16, 30, 31, 32]. The preliminary 
concepts of Marvel, Boncelet, and Retter [32] were presented elsewhere [33, 34] and are fully 
described in section 4 of this report. Using the channel model presented in the previous 
subsection, the steganographic channel can be modeled as shown in Figure 4. 

cg _;       ^Uniform <    Cg + 0.2546, 

cg !S       ^Laplacian <    Cg + 0.1044, 

c3 _       ^Trianular <    Cg + 0.0333. 

Cover Signal 
Z 

Message Signal 
X 

^ Siegosignal 
Y 

Figure 4. Additive Steganographic Channel. 

To date, the image steganography capacity measure used for performance comparisons of 
these systems is that of a channel with AWGN, Cg (17) applied to steganography in Smith 
and Comisky [5]. However, a natural digital image, which consists of continuous tones, is 
not well modeled as a Gaussian noise process because of the underlying structure reflected 
in the high dependency among neighboring pixels. As with other non-Gaussian channels, 
(17-19), the capacity of the image steganographic channel is also lower bounded by the 
capacity of the Gaussian channel. Therefore, we show here and elsewhere [35, 36] that the 
channel capacity for an arbitrary noise channel [26] is better suited as the capacity of the 
image steganographic channel. 
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Shannon's theory states that the "randomness," or uncertainty, of a noise with an ar- 
bitrary distribution can be compared with that of white Gaussian noise using a measure 
of entropy power, also known as effective noise power. If an arbitrary noise Z has entropy 
H(Z), the entropy power, average noise power of WGN having the same entropy, of Z is 
defined as 

Ne(Z) = J- e2HW. (20) 
Z7re 

Using (20) in conjunction with channel capacity for a channel with additive noise, the 
steganographic capacity is bounded by 

Cg < Cstego <  2 t°92 ~^Y—> (21) 

where Ne is the entropy power of the noise of the cover data. Because Ne is strictly less than 
N for all non-Gaussian channels, Cg (17) functions as a lower bound in (21). The upper 
bound is obtained by maximum mutual information between X and Y by assuming that 
Y has a Gaussian distribution with variance S + N and channel noise Z is Gaussian with 
power JVe. 

A tighter lower bound than Cg can be obtain using the entropy-power inequality [28], 

1 S + Ne 1 S + N 
Cg  <  - log2 —— < Cstego <  2 lo92    N    ■ (22) 

In essence, the capacity of the arbitrary additive noise channel is lower bounded by the 
capacity of a WGN channel with the same entropy as the arbitrary noise and upper bounded 
by the channel with maximum entropy of the output (the output of the channel is Gaussian) 
under the same noise conditions. 

Obviously, if Z is WGN, the entropy power (20) reduces to N and the bounds of (22) 
reduce to Cg as expected. 

3.3    Capacity for Image Steganography 

We use the bounds of Cstego (22) to determine the capacity bounds for the additive image 
steganographic channel. From the basic premise of the arbitrary noise channel, we can say 
that the cover image represents the channel noise, which perturbs the information-bearing 
signal much like AWGN with power Ne. The parameters of image steganography channel 
capacity are S, the power of the embedded signal consisting of random noise concealing the 
hidden information; 7Ve, the entropy power of the cover image; and N, the average power of 
the cover image. The entropy power of the cover is expressed as 

Ne(image) = -^- e2ff(imosel (23) 
zire 
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Because a natural image has continuous tones and is highly correlated in two dimensions, 
it can be considered a source with memory. The entropy of such a source is described as 

Hn = — I■■■ I p(xu-■ • ,xn)logp(xu-• • ,xn)dxu-• ■ ,dxn, (24) 

with 
H = lim Hn. (25) 

n—»oo 

To compute this entropy, the probability distribution of the image must be defined. 
Many image models exist [37, 38, 39, 40], although there is not one that is consistently 
accepted. Consequently, without a good model of the image, computation of the probability 
distribution and thus the true entropy (25) is not possible. However, we can use the well- 
known result from channel coding that the average codeword length per source symbol is 
greater than or equal to the entropy of that source (26) [41], to estimate the upper bound 
on the true entropy. 

kmage > H(image). (26) 

Consequently, the average bitrate in bits per pixel (bpp) produced by the state-of-the-art 
lossless image compression algorithm CALIC [42] is an upper bound on the cover image 
entropy. The CALIC algorithm provides an average lossless bitrate of 2.99 bpp for the 18 
8-bit (grayscale) test images selected by the International Standards Organization (ISO). 
Using the CALIC bitrate as an estimate of the image entropy, H(image), to obtain a value 
for the entropy power in (23), we can calculate both upper and lower capacity bounds for 
the image steganographic channel. 

As a generic result, the average power among several test images and the average CALIC 
bitrate were used to calculate the steganographic capacity bounds for a range of SNR values 
shown in Figure 5. The capacity for the Gaussian channel for the also appears in this graph. 
The average CALIC bitrate is 4.9588, and the average image power is 2284.7. The solid line 
in the figure represents the upper bound on the steganographic capacity with the dashed 
line indicating the lower bound from (22). The dotted line portrays the Gaussian capacity 
bound (17). Notice that as the SNR increases, so does the capacity. Conversely, as the SNR 
decreases, the lower capacity bounds go to 0. Furthermore, note the disparity between the 
Gaussian bound and the upper and lower image steganographic capacity bounds. The true 
steganographic capacity bound lies somewhere between the upper and lower bound and more 
accurately reflects the maximum amount of information that can be embedded within the 
cover. 

The bounds were also calculated for two continuous-tone grayscale images that are used 
for demonstration later in this report. Results are plotted against the steganographic SNR 
and are shown in Figures 6 and 7. Figure 6 shows the upper and lower bounds for stegano- 
graphic channel capacity for a subsampled version of the popular Lena image. The CALIC 
bitrate of 4.6321 bpp was used as an estimate of the cover image entropy. Figure 7 displays 
theoretical capacity curves and performance of our steganographic technique, SSIS, for the 
Eiger image with a CALIC bitrate of 5.2366 bpp. 
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Figure 7. Steganography Capacity for the Eiger Image. 

Again, the solid line represents the upper bound and the dashed line indicates the lower 
bound on the steganographic capacity. The dotted line portrays the Gaussian capacity 
bound. The asterisks in the graphs depict the performance of the image steganography 
method, SSIS, we have presented elsewhere [32]. Note that the performance of the SSIS 
system falls within the theoretic upper and lower capacity bounds. Since the maximum 
rate must be less than or equal to the capacity, the SSIS performance establishes new lower 
capacity bound for that particular steganographic channel (image). The SSIS technique, 
which incorporated spread spectrum, channel estimation, and error-control coding, is fully 
described in section 4. 

As previously mentioned, SNR can be used as a first-order approximation of the degree 
of concealment. Although the permissible power of the information signal, 5, may vary with 
the local characteristics of the cover image, an overall steganographic SNR of less than -10 
to -15 dB was found to be acceptable for these particular images. Therefore, capacity values 
for less than -10 to -15 dB SNR are most relevant. 

3.4    Summary 

In this section, we have reviewed the capacity bounds for noiseless, AWGN, and ar- 
bitrarily noisy channels and have used these bounds to model and derive the bounds for 
steganographic channel capacity. These new bounds have been approximated by estimating 
the entropy of the cover using the bitrate of the current state-of-the-art lossless image com- 
pression algorithm, and a generic graph has been constructed to show the relation of the 
bounds. Finally, the bounds have been calculated for two images, then compared with the 
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capacity of the AWGN channel and the actual performance of an image steganography sys- 
tem. It has been shown that the AWGN channel capacity, which has been the performance 
metric used for steganography, greatly understates the steganographic channel capacity and 
that the new bound more accurately reflects the capacity for steganographic systems. 
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4.    Spread Spectrum Image Steganography (SSIS) 

Our method of SSIS is a steganographic communication method that uses digital imagery 
as a cover signal. It is not to be considered a watermarking method, but rather a data- 
hiding method that provides the ability to embed a significant amount of information within 
digital images while avoiding detection by an observer. Hence, more emphasis is placed 
on the maximization of payload and invisibility with less focus on resistance to removal. 
Furthermore, SSIS is a blind scheme where the original image is not needed to extract the 
hidden information. The recipient need only possess a key to reveal the hidden message; 
otherwise, even the existence of the hidden information is undetectable by current means. 

Techniques of error-control coding, channel estimation, and spread spectrum communi- 
cation are combined within the SSIS system. The fundamental concept is the embedding 
of the hidden information within samples of a noise-like waveform that is then added to a 
digital cover image. This waveform is typical of the noise inherent in the image acquisition 
process and, if kept at low levels, is not perceptible to the human eye or by computer analysis 
(without access to the original image). To successfully decode the message, channel estima- 
tion techniques and error-control coding are employed. In SSIS, channel estimation consists 
of image restoration techniques (since the channel in this case is an image) that approximate 
the original cover image from the stegoimage, thus allowing the receiver to function blindly. 
This approximation is then used to acquire an estimate of the embedded signal that has been 
added to the cover. Finally, because the added noise is of low power and the restoration and 
signal detection processes are not perfect, the estimation of the embedded signal may have 
errors that will result in a message bit error rate (BER) that is rather high. To correct these 
errors, an error-control code (ECC) is applied to the message signal before embedding. 

The major processes of the stegosystem encoder are portrayed in Figure 8. Within the 
system, the message is optionally encrypted with key 1 and then encoded via a low-rate 
ECC, producing the encoded message, m. The sender enters key 2 into a pseudorandom 
noise generator, producing n, a real-valued sequence whose samples have a Gaussian dis- 
tribution. The modulation scheme combines the message with the noise sequence, thereby 
composing the embedded signal, s, that is then input to an interleaver, which uses key 3. 
This resulting signal is then added to the cover image, /, to produce the stegoimage, h, which 
is appropriately quantized and clipped to preserve the typical dynamic range of the cover 
image (0-255 for grayscale images). The stegoimage is then transmitted in some manner to 
the recipient. 

The stegoimage is passed through the transmission channel and received by the recipient, 
who, maintaining the same keys as the sender, uses the stegosystem decoder, shown in 
Figure 9, to extract the hidden information. The decoder first tries to estimate the channel 
(cover image) using image restoration techniques to produce an estimate of the original 
cover image, /, from the received stegoimage, h. The difference between h and / is fed 
into a deinterleaver to construct an estimate of the embedded signal, s. With key 2, the 
noise-like sequence, n, is regenerated, and the embedded signal is then demodulated, thereby 
constructing an estimate of the encoded message, rh. The ECC decodes the encoded message 
which is decrypted (if encrypted) using key 1, and revealed to the recipient. 
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Figure 8. SSIS Encoder. 

The interleaver in this scheme, which reorders the embedded signal before it is added to 
the cover image, serves a dual function. The first is to distribute a group or burst of errors 
uniformly among many codewords, thus allowing errors to occur almost independently within 
a codeword and increasing the probability that the number of errors occurring in any one 
codeword will not exceed the error-correcting capability of the code [43]. Secondly, since 
the interleaver requires a key to stipulate the interleaving algorithm, this key can serve as 
another level of ambiguity in order to establish the proper order of the embedded signal 
before decoding. 

SSIS uses noise inherent to digital imagery to hide information within the image. Wide- 
band thermal noise is common in imagery of natural scenes captured by photoelectronic 
systems, such as CCD arrays, and can be modeled as AWGN [44]. In SSIS, a variation 
of spread spectrum techniques is used to embed the message within AWGN, and, because 
the message may be encoded using a low-rate error-control code, the encoding has a similar 
spreading effect as few message bits are spread among the many encoder output symbols. 
This additional noise that conceals the hidden message is a natural phenomenon of digital 
imagery and, therefore, if kept at typical levels, may not be noticed by the casual observer 
or detected by computer analysis. 

The major components of the encoder and decoder are described in the following subsec- 
tions. Section 4.1 delineates the two modulation techniques used within SSIS. Section 4.2 
provides insight into the channel estimation stage. Section 4.3 details many types of error- 
control coding used within our steganography system. Section 4.4 displays system perfor- 
mance when operating in the noiseless transmission channel, additive noise transmission 
channel, and noise caused by lossy image compression. Finally, the system performance is 
compared to the capacity bounds developed in the previous section. 
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4.1    Modulation 

It is the central philosophy of SSIS that the embedded signal added to the cover image 
must have the same characteristics as noise inherent to the image — namely, low-power 
AWGN — so the hidden information will remain invisible. Consequently, for cover images 
that consist of natural scenes, the embedded signal is constructed by modulating the message 
data with a white Gaussian noise-like waveform in such a way that the modulated signal 
maintains the Gaussian distribution. 

The concept of a stored reference spread spectrum communication system [45] is used to 
enable independent generation of identical pseudorandom waveforms at both the transmitter 
and receiver. Therefore, both the sender and receiver must possess the same key [46] and 
identical waveform generators. 

For our system, we use discrete real-valued samples of the noise-like waveform. The 
waveform is generated by a pseudorandom number generator and has a Gaussian distribu- 
tion. The number generator meets the requirements of a random sequence as specified in 
Knuth [47]. 

Two types of modulation are used within SSIS: a simple sign (antipodal) modulation 
technique and a piecewise linear technique for improved detection performance. In this 
particular subsection, we refer to detection in the communication sense, correctly interpreting 
the transmitted signal, and not in the steganographic sense, as a measure of detecting the 
existence of the embedded signal by an observer. 
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4.1.1    Sign-Detector System 

Let us begin by describing the sign modulation technique, the initial modulation method 
used within our system that is similar to the one used in Härtung and Girod [30]. Assume 
that the message signal, m, is a bilevel signal consisting of {—1, +1} and the noise sequence, 
n, is a sequence of real numbers that has a Gaussian distribution with zero mean and sample 
variance, a2. The two signals are modulated by simple multiplication, as in (27), 

s(m,n) = m*n. (27) 

The embedded signal, s, is a sequence of real numbers possessing a Gaussian distribution 
with zero mean and sample variance, a2. 

The sign of both the embedded signal sample and the original noise sequence sample 
determines the value of the message bit. Since the noise sequence is symmetric about zero, a 
change in sign preserves the Gaussian distribution of the signal. The demodulation process 
is elementary. The sequence n is replicated at the receiver, and the sign of this sequence is 
compared to the sign of the received embedded sequence, s, to recover an estimated value 
of the message sequence, m, as shown in (28). 

(28) 

Even though this modulation method meets the necessary requirements of producing a 
Gaussian sequence regardless of the distribution of the message sequence, a major deficiency 
lies within the detection of this signal in the presence of noise for the transmission process. 
Because the embedded signal must follow a Gaussian distribution, many of the sample values 
occur in the vicinity of zero, with fewer samples at the tails. Moreover, only the variation 
of the sign of samples indicates the value of the encoded message bits. Although the dis- 
tance, D (29), between the values of the embedded signal for both values of m is large for 
extreme values of the Gaussian waveform, it is much more often small, in accordance with 
the Gaussian distribution. 

D=\s(n,m = -l)-s(n,m = +l)\. (29) 

In most instances, when the embedded signal is exposed to external noise from the effects 
of the cover image or the actual transmission channel, correct detection of the encoded 
message sequence is unlikely. As with many communication signals that may be exposed to 
noise, we desire to have the points within our signal constellation as far apart as possible, 
reflecting a large minimum distance. 

Consider a simple bipolar modulation scheme, shown in Figure 10. The modulation 
points en and 6; are separated by dmin. This minimum distance is defined as the smallest 
Euclidean distance between any pair of distinct points in the signal constellation, as in 

imin = min |at- — 6,-|. (30) 
all i 
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Communication constellations are typically compared by their dmin. If the modulated signal 
incurs noise or distortion, the larger the minimum distance, the more distortion the modu- 
lated signal can incur and still be demodulated correctly with high probability. However, if 
the distortion is greater than the threshold value [dmin/2j, then a demodulation error will 
occur. 

"min 

a= "min i 

Figure 10. Bipolar Modulation. 

For steganography, the same concepts apply. With steganography, the maximum allow- 
able power of the embedded signal is dictated by the need for concealment. The minimum 
distance for the steganographic system is 

dmj„ = min|s(nt-,ro,- = -l)-s(n,-,m,- = +l)|. (31) 
all i 

Therefore, we develop a modulation technique in which the minimum distance is maximized 
to promote more reliable detection and thus yield fewer errors in our estimate of s. 

4.1.2    Piecewise Linear Modulation Scheme 

Improved detection performance in the presence of noise motivated our search for a 
more effective modulation scheme that would provide a large minimum distance. Under the 
constraint that the embedded signal maintains a Gaussian distribution, the new modulation 
technique should modulate keyed pseudorandom values with the bilevel message bits and 
produce a sequence of real numbers that follow a Gaussian distribution and yield a large 
minimum distance. 

The search for a function to transform one Gaussian random sequence into another, under 
the additional constraint that the distance between the two is maximized, is a daunting task. 
At the onset, one would have to consider the class of bijections (one-to-one and onto) of the 
real line. Consequently, we simplified the problem by exploiting the relationship between 
the Gaussian and uniform distributions. 

Beginning with transformations in the uniform domain [0,1] mapping U[0,1] to U[0,1] and 
knowing that uniform variables may be transformed to any continuous distribution, including 
the Gaussian by inverting the cumulative distribution function (cdf) [48], we search for a 
transformation to maximize dmin of (31). Once a transformation is obtained, mapping one 
uniform to another in a one-to-one and onto fashion, the uniform value and its transform 
could then be converted to Gaussian values and used as modulation points. 

Let us look at the transformation that produces the modulation points for the sign 
modulation method that is presented in section 4.1.1. Assume that U = {u0, «i,. • •, un) are 
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W(0,1) variates. Now assume that the transform / of (32), depicted graphically in Figure 11, 
produces f(U) = {/(wo),/(«i), • •.,/(««)}, which is also uniformly distributed on (0,1). 

/(«) = 1 " u 0<«< 1. (32) 
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Figure 11. Transformation for Sign Detector Modulation. 

The embedded signal is constructed as 

>(u,m) _ J   $~>) m = — 1 
$-x(/(«))   m = +l, (33) 

where $ 1 denotes the inverse cdf for a Gaussian random variable. 

From Figure 11, observe that at the point u = |, the transformation f(u) = u, and by 
(29) and (33), the distance D = 0 and the message m cannot be recovered. 

Now consider a transformation, uniform to uniform, that has a single discontinuity at 
u = \. Given a pseudorandom sequence U = {u0,«i, • • • ,un} from {7(0,1), generate a 
sequence g(U) = {g(u0),g(ui),... ,g(un)} under the transformation g(-), of (34), shown 
graphically in Figure 12. 

9(u) 

'   « + |     0<U<  \ 

0 otherwise. 
(34) 

To encode, each element of the embedded signal sequence, s, is formed by selecting from 
U or g(U), arbitrated by the elements of the modulating sequence, m, and transformed to a 
Gaussian random value, as in (35). 
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Figure 12. Transformation for Piecewise Linear Modulation. 

s(u,m) 
m = — 1 
m = +1. 

(35) 

Demodulation of the embedded sequence is accomplished by regenerating both $~l(U) 
and $-1 (#([/)) at the receiver and calculating a threshold as the midpoint between the 
modulated values. The estimated embedded signal is then compared to this threshold to 
determine the value of the encoded message. 

We next demonstrate that our transformation g(-) is an optimal solution in the search 
for the transformation that maximizes the minimum distance between the two possible mod- 
ulated values, as in (36), 

a* = arg max mm 
" 9    0<u<l s-»-*-1^)) (36) 

To confirm this, we first establish that the transform in (34) does in fact produce a 
random sequence that corresponds to a uniform distribution. This fact is important to 
assure that when the inverse Gaussian cdf, $_1(-)5 is applied, the inverse transformed value 
will follow a Gaussian distribution. Then we show that the transform in (34), is an optimal 
solution for maximizing the minimum distance in the uniform space. We then proceed to 
quantify the value of minimum distance between $_1((7) and $-1 (#(£/)). Finally, we present 
a numerically demonstration that suggests this minimum distance is in fact an optimal 
solution to our problem (36). 

4.1.2.1 Distribution of Transformed Variable. We have introduced the stochastic 
constraint that the transform g(-) (34) preserve the uniform probability distribution of the 
input. This preservation is necessary because the output of the transform is then converted 
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to a Gaussian variable using the inverse cdf. If the transformation does not produce a 
sequence that is uniformly distributed, the output of the inverse cdf will not have a Gaussian 
distribution. 

We substantiate that g{U) is distributed uniformly on the unit interval by establishing 
that the moment-generating function for the uniform distribution function is equal to the 
moment-generating function for g(-). 

Definition: If f(x) is the probability distribution function of the random variable X, 
the moment-generating function [49] of g{X) is given by: 

M, 
J — 00 

Now let u~U(0,l) and let 

(37) 

r « + i o<«<i 

Then the moment-generating function for g{U) is 

u 
0 otherwise. 

(38) 

Mg(u)(t)   =    f°° e*<«>/(u)Ai, 
J—oo 

where 

and 

p e*^2)du = el p etudu = e*{-etu) 

J'e^u-^du = e-l J' 

i        i 

= — (ea-1), 
o       t 

u = e-i I   etudu = e~2(-etu) 
e  2 

(e* - e->\ 

which results in 

Mg{u)(t)   =   -(e* - e$ + e* - 1) 

= W-v- 

(39) 

(40) 

(41) 

(42) 

Consider the Uniqueness Theorem [50]. Let X and Y be two random variables with moment- 
generating functions Mx(t) and MY{t), respectively. If Mx(t) = MY(t) for all values of t, 
then X and Y have the same probability distribution. 

The moment-generating function for a uniform probability distribution on the interval 
(0,1) [51] is given as 

Mu(o,x){t) = i(e« - 1). (43) 
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Note that the moment-generating function of (42) is the same moment-generating func- 
tion as that for a uniform distribution [7(0,1) (43). By the Uniqueness Theorem, we have 
shown that the transformation g(U) produces a uniform random variable. 

4.1.2.2    Optimality - Uniform Distribution.       Theorem: The function g(-) is an 
optimal solution maximizing the minimum distance between U and g(U). 

Let T, with / € F, denote the class of bijections (one-to-one and onto) of the unit 
interval [0,1]. For x = |, the distance is expressed by the inequality 

|x - /(*)| = k-4> <-2   V/€^i 

therefore, 

max min la; — f(x)\ < -. 

Now consider our transformation of (34), since distance is 

\x-g{x)\=l-   \/x €[0,1]. 

Then 
min la; — g(x)\ — -. 

x€[o,i]'       yv  n     2 

(44) 

(45) 

(46) 

(47) 

but g €LT\ therefore, g(-) is an optimal solution for (45). 

By the aforementioned, we have shown that the piecewise linear function g(-) is an 
optimal transformation from one uniform random variable to another, which maximizes the 
minimum distance between the two. 

4.1.2.3 Minimum Euclidean Distance. Our initial goal was to generate two nor- 
mally distributed random variables for each message bit. Because the variables would repre- 
sent the two possible values of the message bit, the variables must have maximum Euclidean 
distance. Ordinarily, to find the maximum or minimum of a continuous distance function, we 
would solve for the points where the derivative is equal to 0. However, the inverse Gaussian 
cdf, $-1, does not exist in closed form, so we are denied the used of a direct method to 
determine the minimum value of the distance. 

We begin by expressing the distance between the possible modulation values of our piece- 
wise linear transformation as 

D = $-1(«)-$-1(^(u)) 

Now consider the distance for the range of 0 < u < | 

1 
A)<„<| = *"» " *~> + g)        ° ^ u < 2' 

(48) 

(49) 
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Definition: The relationship between the normal value, xu, and the uth. percentile can be 
expressed as 

$(x„) .= / " (j>(t)dt = u;      ^~1(u) = xu      0<«<1. (50) 

with </>(•) representing the Gaussian density function. 

Let 

«€(0,1); g{u)e(l,l). (51) 

$-1(u) = xu; $-1(« + -) = a:(li+i). (52) 

^(u)-*"1^«))   =   ay-a^+i). (53) 

Now consider for some e > 0 and arbitrarily small, 

« + £€(0,-);    5(« + e) = u+- + c€(i,-) (54) 

V e > 0 satisfying (54), 

3   6 = 6{u,e)      f <f>(t)dt = e,        j <fi(t)dt = e, (55) 
«/a Jc 

where 

a = xu        6 = x(u+£) = xu + £x(e), (56) 

c = xu+i_   d = x(u+^+e) = x(u+fr + 82{e). (57) 

But for u € (0, |), <£(x) for xu < x < xu + 6i(e) is everywhere less than <f>(x) for £(u+i) < 
x<x(u+|) + ^2(e). 

Using the Mean-Value Theorem [52], Let / be continuous on the closed interval [a, 6]. 
Then there is some number x' such that a < x' < b and 

fbf(x)dx = f(x')(b-a). (58) 
Ja 

Hence, since the integrals of (55) are equal to e, then using the Mean-Value Theorem: 
<f>(x')(b - a) = <f>(x")(d - c) with <j>(x') < <f>(x"); therefore, b - a > d - c. In other words, 

xu ~ *(«+£) < *(«+*) - 3(u+!+e)- (59) 

But u € (0, |) is arbitrary and e > 0 is arbitrarily small; therefore, by (59), $_1(u) - 
$-1(#(u)) is strictly monotonically increasing on the interval (0, \). 

Now consider the value u = \.   At u = \, g(u) = | and $_1(|) = xi, depicted in 

Figure 13, but recall, by symmetry, that xa = -xi_a for 0 < a < 1, so $-1(§) = —xi. 
Therefore, 

*""1(|)"*-1(|) = *}-(-*l) = 2xj. (60) 
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Figure 13. Distance Between Modulation Points, u = \. 

We would like to express this distance as a function of the standard normal variate, x 
N(0, <J

2
), appearing in (60). To do so, we make use of the familiar transformation 

X-H 

a 
= z, (61) 

where z ~ iV(0,1). By virtue of symmetry, a completely analogous argument holds for the 
remaining subintervals (J, |), (§, §), and (f, 1). A plot of the signed distance, (29), is shown 
in Figure 14, with the noise power a2 = 1. As can be seen, the minimums occur at u = | 
and u = f, with dmin = 2xi = 2azi = 1.35 (a = 1), consistent with (60). 

4 4 4 

To compare the distance measure for this modulation with the sign modulation of sec- 
tion 4.1.1, a graph of the Euclidean distance for the sign modulation method is shown in 
Figure 15. The minimum distance for the sign modulator occurs at u = | and is equal to 0, 
which is significantly less than the minimum distance for our piecewise linear modulation. 

At the decoder, the modulated values can be correctly detected if the distortion does 
not exceed the minimum distance of [2or*2

Q'25j. Furthermore, as intuition would reason, this 
minimum distance is proportional to the power of the noise signal, cr2, and can be adjusted 
to achieve desired performance. 

4.1.2.4 Results for Gaussian Distribution. We now discuss the specific properties 
that our target function must possess. As an alternative approach to confirming that our 
function preserve the distribution of the input sequence, a direct method using properties of 
calculus and probability is used. 
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Figure 14. Piecewise Linear Modulation, Euclidean Distance. 

To begin, let X be a continuous random variable with density fx(x) and let Y = g(X) 
be an invertible transformation of X. To determine the density of the transformed variable, 
/y(y), notice that 

P(Y <y) = P(g(X) <y) = P(X < g~\y)). 

Then rewriting this relationship, we have 

(62) 

/y t9 1 (3/) 
fy(t)dt = / fx(t)dt 

-00 J—oo 

After differentiating both sides of (63) with respect to y, we obtain 

(63) 

fy(y) = fx(9-\y)) 
dg~\y) 

dy 

the expression for the probability distribution of the transformed variable. 

(64) 

Suppose we require the fy(y) = 1, 0 < y < 1, (i.e., g(X) ~ £7(0,1)). This means 
that fxig^iy)) = 1 for 0 < y < 1. But from (64), we have that dg~d^

y) must be equal to 

one (actually, dy = 1, to allow for both monotonic increase or decreasing g(X) [53]). 
This means that for any invertible transformation that preserves the probability distribution 
of the input, the transformation must have a slope equal to ±1. This gives us a better 
understanding of how the graph of the transformation should look in order to preserve the 
probability properties. 
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Figure 15. Sign Modulation, Euclidean Distance. 

For our case, X is uniform on the interval [0,1] and Y = g(X), where g(X) is denned 
by (34). Now consider the value of d9~dy^ for our transformation g(-). The inverse g-1{y) 

has a discontinuity at y = |, so the derivative d9~d^
y' does not exist at that point; however, 

^^ = 1 for 0 < y < 1 and y ± §. Therefore, fy(y) = fxig'Hy)) = 1 for 0 < y < 1 
with y ^ \. In other words, the random variable Y is distributed uniformly on the unit 
interval [0,1] except for a set of measure zero (at y = |). Moreover, any transformation of 
the uniform random variable X, where Y = g(X), must be of the form Y = X + c, where 
c is a constant, for the stochastic constraint to be satisfied. Since our transform, <?(•), is of 
this form, we have shown again that it will preserve the distribution of the input. 

Thus far, we have shown that our candidate function g(U) adheres to the stochastic 
constraint and is optimal in maximizing the minimum distance in the uniform domain. 
Furthermore, we have quantified the minimum distance in the Gaussian domain, which is a 
function of the noise power a2. At this point in our investigation, we have some familiarity 
with the way in which the optimal transform must behave. In fact, we know the optimal 
transform must have a slope equal to ±1 in order to preserve the stochastic constraint. This 
restricts our class of functions T to functions of the form Y = g(X) — X + c, where c is a 
constant. 

We have considered the sign modulation transformation and showed that the minimum 
distance is equal to 0. We have allowed a single discontinuity at u = \ for our candidate 
function, resulting in a minimum distance of 2az i. What if we allow the location of this single 
discontinuity to vary along [0,1]. Is it possible to achieve a greater minimum distance? To 
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address this question, we have conducted a numerical investigation in which the minimum 
of the distance (48), was evaluated over a class of transformations g(-) from (65) with A 
varying between 0 and 1. 

u + (l-A)   u<A 
g(u) = {  u - A A > u 

0 otherwise. 
(65) 

Figure 16 illustrates the results of this numerical investigation. From this graph, we see that 
the minimum distance reaches an apex when the discontinuity location is | (as is the case 
with our transform g{U)), resulting in a minimum distance equal to 1.35 for a = 1. 

0.2        0.3        0.4        0.5        0.6        0.7 
Discontinuity Location 

0.8       0.9 

Figure 16. Minimum Distance vs. Discontinuity Location. 

Our numerical results strongly suggest that our mapping is an optimal choice from all 
possible mappings in the class T with a single discontinuity that provides the largest mini- 
mum distance. 

4.1.3    Summary 

Under the fundamental premise of SSIS, the embedded information must have the same 
probability distribution as noise that appears naturally in the cover. In this subsection, 
we have discussed two techniques to combine the information-bearing signal with the char- 
acteristic pseudorandom noise. The initial sign modulation technique has been presented 
and its detection performance discussed. We have shown that for improved recovery of the 
embedded signal, it is necessary to maximize the minimum distance between the modulated 
values, and a second modulation technique has been developed with this goal in mind. This 
technique has been illustrated and its performance quantified. In addition, we have presented 
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the conjecture that the piecewise linear transformation of this method is an optimal solution 
to maximizing the minimum distance between the modulation points. 

For the SSIS system, the message signal is modulated using the piecewise linear technique 
to construct the embedded signal, s, which is then added to the digital cover image. The 
image is subsequently quantized and clipped to become the stegoimage. The selection of the 
power of the embedded signal, a2, is based on the balance between human perception and 
that needed for reliable decoding. 

Although an intruder may be aware of the general strategy of the system, he/she would 
have difficulty establishing whether the noise in the stegoimage is attributed to the image 
itself, the transmission channel, or an embedded signal. Without the necessary keys, the 
modulated signal is statistically indistinguishable from white Gaussian noise and is as secure, 
in a cryptographic sense, as the pseudorandom number generator used within the system. 

4.2    Channel Estimation 

For the SSIS system, the hidden data is embedded within WGN that is subsequently 
added to the image pixels. If the recipient were to possess a copy of the original cover 
image, these pixels could be subtracted from those of the stegoimage to result in a near 
perfect reproduction of our embedded signal, neglecting quantization error. This situation, 
where the cover image characteristics are known, is analogous to transmission through an 
essentially noiseless channel. However, for our scenario we require a blind system where 
the recipient does not need to possess the original cover in order to recover the hidden 
information. Consequently, at the receiver, the embedded signal must be extracted from the 
stegoimage without any a priori channel information. 

4.2.1    Embedded Signal Recovery 

Because a receiver does not have the original image, it must approximate the image 
from the stegoimage; in other words, the receiver must estimate the channel, where the 
channel in question is a natural grayscale cover image to which WGN has been added. Given 
that this type of image is rich in low-frequency content [44], we can use image restoration 
techniques to construct an approximation of the original image. This approximation can 
then be subtracted from the stegoimage, leaving an estimate of our embedded signal. In this 
way, we eliminate the need for the recipient to possess a copy of the cover image and yield 
a reasonable estimate of the embedded signal for decoding purposes. 

The restored image can be obtained with a variety of image processing filters such as 
mean or median filters [44], wavelet shrinkage techniques [54], or adaptive filters [55]. The 
embedded signal estimate, derived from the stegoimage using image restoration, and an iden- 
tical copy of the pseudorandom wideband waveform used at the encoder allow demodulation 
of the hidden data. 
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4.2.2    Filter Selection 

It is plausible to assume that the best-performing filter in this context would be the 
one that provides the lowest overall MSE between the filtered image and the original cover 
image, thus providing a restored image that was much like the original cover image in a 
mean-squared sense. However, through experimentation, we have found that that the MSE 
was not the appropriate fidelity criterion for our system given our ultimate objective to 
obtain the most accurate estimate of the embedded signal. 

The performance of several restoration techniques was evaluated within the SSIS system. 
To cite an example, Table 1 exhibits the MSE and resulting embedded signal BER (the BER 
before the error-control decoder) for a sampling of the filters tested using the Lena image as 
a cover with an embedded signal power (variance) of 20. From our empirical data, a sample 
of which is shown in this table, the filter that typically produces a restored image with the 
lowest MSE is the adaptive Wiener (AW) filter, implemented using Lee's algorithm [56]. 
However, this filter does not provide the lowest embedded signal BER. The alpha-trimmed 
mean (ATM) filter presented in Bednar and Watt [57] provides the lowest embedded signal 
BER of the tested filters. 

Table 1. SSIS Image Restoration Filter Performance. 

Image Restoration MSE Embedded Signal BER 
Mean Filter 43.72 0.191 
ATM Filter 36.43 0.189 
Median Filter 23.50 0.208 
AW Filter 10.62 0.254 

In the following subsections, we discuss two of the restoration filters from Table 1: the 
AW filter, which provides the lowest MSE, and the ATM filter, which produces the lowest 
embedded signal BER. Additionally, we compare the two filters. 

4.2.2.1 AW Filter. Initially, the AW filter was used by SSIS to reduce the amount 
of low-level additive random noise in the stegoimage. Wiener filtering preserves the signal 
while eliminating noise in the degraded image. Due to linear independence between the cover 
image and the embedded signal, the optimal linear minimum MSE estimate of the original 
image is obtained by filtering with an AW filter [55]. The frequency response of the filter is 
dependent upon the power spectra of the original image and noise as shown in (66), where P/ 
is the power spectrum of the original image / and Ps is the power spectra of the embedded 
signal, s. The filter reflects a bivariate spectrum because the image data is evaluated in two 
dimensions. 

lf(wi,W2) = 
Pf(uii,L02) 

■P/(wi,^) + -P»(wi,W2)" 
(66) 
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The power spectrum of the AWGN, which is constant and independent of u>i and U72, 
is known at the receiver from the regenerated sequence. Although the embedded signal 
characteristics do not change within the stegoimage, the image characteristics do change 
from one region to another. For instance, consider an image with smooth background areas 
and a detailed foreground; the power spectrum will differ significantly in these areas. To 
compensate for the changing image characteristics, the AW filter is a space-variant filter 
whose filter coefficients change as a function of the local image statistics. Adaption to the 
local image characteristics can be performed on a pixel-by-pixel or block-by-block basis. 

The power spectrum of the original image is not known at the receiver and, therefore, 
must be estimated from the received stegoimage, h. If we assume that the original image 
signal, /(ni,ra2), of a small local region of the image is stationary, it can be reasonably 
modeled as (67), where mf and 07 are the local mean and standard deviation of the original 
image, and w is a zero mean, white noise process with unit variance [58] [59]. 

/(ni,w2) = m/ + <7fU7(ni,n2). (67) 

To estimate these parameters from the stegoimage, consider that when the mean of the 
embedded signal is zero, as is the case with the AWGN embedded signal, m/ is identical 
to the mean of the local region of the stegoimage, mh. Additionally, because s is additive, 
a\ can be defined as (68) and an estimate of a] can be obtained by (69), where a\ is the 
variance of the local region of the received stegoimage. Within this local region, the transfer 
function of the space-variant Wiener filter is given by (70), and the restored image, /, is 

obtained as in (71). 

4 = <r) + al (68) 
2 

a%nun2) = { f^^ ~ <*   'ffi»}^ > &- (69) 
Jv    '     '      1 0, otherwise. 

ui \ Pf("i,"2) _      °) /70\ 
V P/(wi,W2) + P,(wi,W2) 0-2+0-2 

£1 

/(ni,n2) = mÄ + (Ä(ni,n2)-m&)*T2-TT2*(ni'n2)- (71) 

The resultant restored image is scaled according to the relation between aj, which is 
estimated from the local region statistics of the stegoimage, and the predetermined of. If 
o2. is much greater than the contrast of the degraded image, the contrast is assumed to be 
primarily due to s and is significantly attenuated. Conversely, when the estimated frj is 
greater than a2

s, the local contrast is attributed to the original image and little processing is 

done [55]. 
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4.2.2.2 ATM Filter. The ATM filters form a group of filters whose properties vary 
between the mean and the median by way of a tuning parameter, / [57]. The particular 
implementation of the ATM filter used here is an order statistics filter of length N operating 
on the sequence {XJ : j = k — M, • • •, fe, • • • ,k + M}, where k is the center sample and N is 
odd. The output of the filter, r/^, is given by 

» = :yrä.||> (72) 

where x£\ is formed from the elements of Xj arranged in increasing order, 

xk
{l)<x\2)<---<x\N). (73) 

The filter parameters were selected as those that commonly provided the lowest BER 
for a collection of images with varying characteristics. The SSIS ATM filter implementation 
used a length of N = 9 indicating a 3 x 3 pixel window with the tuning parameter / = 1. 
With the tuning parameter / set to one, the minimum and maximum values of the input is 
eliminated, as in 

In essence, this filter estimates the center pixel by "trimming" the minimum and max- 
imum values within the window, thereby disregarding outliers and subsequently taking the 
mean of the remaining pixels to smooth the data. 

4.2.2.3 Filter Comparison. In this subsection, we demonstrate the effectiveness of 
these restoration filters within our steganography system. Figure 17 shows a test image that 
consists of a rectified sine wave covering the left half of the image and a smooth area on the 
right half. The pixel values for a single row of this image are illustrated in Figure 18. The 
image is indicative of the edges and flat regions encountered in natural imagery. 

We embedded information in the test image using the SSIS system and a embedded signal 
(stegosignal) power of 20 to produce the stegoimage shown in Figure 19. We then used two 
different decoders, differing only in image restoration filter, to decode the hidden information. 
Figure 20 shows the error maps for both filters; a white pixel indicates that an embedded 
signal decoding error occurred at that location, and a black pixel reflects no error. As can be 
seen in this figure, many errors are incurred using the decoder with the AW restoration filter. 
In fact, the embedded signal BER is 0.2494 even though the MSE between the stegoimage 
filtered by the AW filter and the original cover is equal to 10.15. For the ATM restoration 
filter, the MSE is 55.62; however, the embedded signal BER is only 0.0699, indicated by the 
small number of white pixels. 

From this experiment, we demonstrate that although the errors between the original 
image and the Wiener filtered image were small, they were very frequent in number, and 
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AW Filter ATM Filter 

Figure 20. Embedded Signal Error Map. 

the errors encountered using the ATM filter, although much larger in magnitude, were less 
numerous. In the decoding process, once the error threshold has been traversed, a decoding 
error occurs and the magnitude of the error is of no consequence. The only relevant factor 
in the embedded signal BER is that an error has been made; thus, the MSE is not indicative 
of the filter performance within this system. Let us take a closer look at this phenomenon 
by comparing the embedded signal estimation for both decoders with the original embedded 
signal and the decoding threshold. Figure 21 shows actual values for a partial row from our 
test image. 

30 
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- - Embedded Signal s 

o    s for AW Decoder 

*    s for ATM Decoder 

, *v 

30 34 36 38 40 42 
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Figure 21. Decoded Values. 

The solid line represents the threshold that determines the decoder mapping (whether 
the hidden data will be decoded as a -1 or a +1). The dotted line shows the values of the 
actual embedded signal, while the "o" represents the embedded signal estimate from the AW 
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decoder and the "*" represents the embedded signal estimate produced by the ATM decoder. 
From this plot, we can see that the ATM decoder typically remains on the same side of the 
threshold, above or below, as the original embedded signal, thus indicating correct decoding. 
However, the AW decoder values may, at times, lie on the wrong side of the threshold, as 
is the case with locations 45-47, resulting in a decoding error. Also note that at location 
40, the ATM decoder has made a very poor estimate of the embedded signal, increasing 
the MSE without causing a decoding error. Conversely, at location 33, the AW filter value, 
though close in distance to the embedded signal, lies on the other side of the threshold and 
would result in a decoding error. From this comparison and the results of experiments using 
other typical images, we can conclude that the ATM filter provides better overall detection 
of the embedded signal by more accurately estimating our channel. 

4.2.3    Summary 

In this subsection, we have discussed the importance of channel estimation to our blind 
steganographic scheme. We have presented the performance of various restoration tech- 
niques, and two specific methods have been compared in detail. Additionally, we have 
evaluated two fidelity criteria: the MSE and the embedded signal BER. Because our ulti- 
mate goal was to minimize the embedded signal BER and not the MSE, we have concluded 
that the ATM restoration filter offered the best performance in the SSIS system. This filter 
disregards outliers, smoothes the effects of noise, and more accurately estimates the channel. 

The estimate of the embedded signal is compared with an identical copy of the pseu- 
dorandom sequence used at the encoder. Even though the channel estimation may yield 
good performance, the recovery of such a low power signal, necessary to provide the degree 
of invisibility essential for a steganographic system, may not provide error-free decoding of 
the embedded signal. Therefore, to compensate for the performance of the embedded signal 
estimation, we have incorporated the use of error-control coding as discussed in the next 
subsection. 

4.3    Error-Control Coding 

For our steganographic system to function as desired, it must be able to decode the hidden 
message with a small probability of error. However, because the channel estimation does not 
perfectly replicate the channel, the estimate of the embedded signal is likely to contain errors. 
This error will cause the estimate of the embedded signal produced by the demodulator to 
have a substantial number of bit errors, indicated by a high embedded signal BER. For most 
cover image/stegopower combinations, the BER may be high, at times greater than 25% 
(see Table 1). To compensate, error-control coding is integrated into the SSIS system. 

Any code that is capable of correcting the signal estimation BER can be used within 
SSIS. This BER is influenced by the stegosignal power, cover image characteristics, and 
attributes of the transmission channel. In this subsection, we consider operations only for a 
noiseless transmission channel; the noisy transmission channel is addressed in section 4.4. 
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The entire decoding process can be simulated at the encoder, thus allowing selection of the 
proper code by the SSIS system. This assures that the hidden message will be recovered, with 
high probability, free of errors for the noiseless transmission channel. When the transmission 
channel is expected to be noisy, an appropriate code may be selected to correct for the 
additional channel errors. Similarly, error correction may be able to compensate for the errors 
generated by low levels of noise resulting from lossy image compression of the stegoimage. For 
our purposes, noise caused by lossy image compression is considered part of the transmission 
channel. 

Of course, the drawback of using codes is that, because they add redundancy by adding 
extra bits, the amount of payload (hidden data) that can be embedded within an image is 
reduced. For instance, if the BER is high, a low-rate code must be used to correct the errors 
in the embedded signal, thereby severely limiting the payload size. However, without them 
we cannot get closer to capacity. Since the objective of steganography for data hiding is to 
embed a large amount of data, choosing the highest rate code with the required correction 
capability is of significant consequence. 

It should be noted that interleaving of the hidden data is vital to many error-control 
operations with short block lengths. By reordering the data, the interleaver disperses a long 
error burst uniformly over many codewords, causing the errors within each codeword to 
occur almost independently and giving the code a better opportunity to correct the errors in 
all blocks. The interleaver does not alter the payload amount, but its benefit to the coding 
function merits mention. 

In this subsection, we discuss the types of codes used within the SSIS system and their 
specific performance. Additionally, it is shown how side information provided by the channel 
(stegoimage) can be used to assist the decoder in error correction. 

4.3.1    Low Rate Error-Control Codes 

To correct a large number of errors in the embedded signal, a low-rate code must be used. 
For some cover images, the SSIS embedded signal BER was exceptionally high, greater than 
30%. Therefore, we needed to correct a large number of bit errors. We used a selection 
of the many codes presented in [60] correct this large number of errors. These codes were 
derived by expanding traditional Reed-Solomon (RS) codes with a symbol alphabet equal to 
Q = 23 to j binary symbols. The selected codes have many low-weight parity checks and are 
decoded using an iterative decoder developed by Retter [61]. The iterative decoder is based 
on an idea from Bossert and Hergert [62] using low-weight parity checks. These codes and 
decoder are capable of correcting many more bit errors than the traditional RS decoders. 

For instance, using the (255,4) RS code, whose minimum symbol distance is equal to 
the BCH bound of (N + 1 - K) = 252 = dmin, the conventional RS decoder can correct 
up to [-^-^j symbol errors. The symbols alphabet contains 256 symbols. This code can 
be expanded to a (2040,32) binary code because each symbol can be expanded to an 8- 
bit binary number and decoded with a conventional RS decoder, but any pattern of errors 
that affected more than 125 symbols would be uncorrectable. The average binary minimum 
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distance of the (2040,32) codes in Retter [60] is 863.4, suggesting that about 431 binary 
errors are correctable with the appropriate binary decoder. However, the iterative decoders 
of Retter [61] can correct virtually all error patterns with weights less than 700. 

Table 2 lists these powerful codes, BER capability, the possible SSIS payload in bpp, 
and the information rate (information bits/image bits). We select the code from this table 
that is capable of correcting the specific embedded signal BER to encode and decode the 
message data. However, because (as previously mentioned) these codes are of low rate, the 
SSIS payload was significantly restricted. 

Table 2. Binary Expansion of RS Codes. 

Original 
RS Code 

Binary 
Code 

BER Correcting 
Capability 

Payload 
(bpp) 

Information 
Rate (bits) 

(31,8) (155,40) 0.12 0.2581 0.0323 
(63,6) (378,36) 0.21 0.0952 0.0119 

(127,5) (889,35) 0.27 0.0393 0.0049 
(255,4) (2040,32) 0.34 0.0156 0.0019 

4.3.2    Maximum Likelihood Decoding 

Since one of our primary goals is to increase the amount of payload, we looked for 
higher rate codes that were capable of correcting many errors. We explored the use of the 
binary expansion of the (31,5) RS code decoded via a hard-decision maximum-likelihood 
(ML) decoder. The binary expansion of this code is a (155,25) binary code that has 225 

(approximately 32 million) codewords. The ML decoder compares each block to be decoded 
with each of the 32 million possible codewords and selects one as the decoded value based 
on a chosen cost function such as the minimum Hamming distance (the number of places 
in which two codewords differ). Due to the relatively small number of codewords in this 
code, it may be feasible to do such comparisons. The code can correct 43 out of 155 bits 
(0.277 BER) with good performance (successful decoding 98% of the time) and has a payload 
of 0.1612 bpp and an information rate of 0.0201. This code may replace the (378,36) and 
the (889,35) codes (in Table 2) in the SSIS system to obtain higher payload for the range of 
error-correcting capability, provided that slower decoding (due to the 32 million comparisons 
for each codeword) is permissible. 

4.3.3    Soft-Decision Decoding 

Again, in an attempt to increase the payload and get closer to the channel capacity, 
we tried convolutional codes. The output of a convolutional code depends not only on the 
corresponding input but also on m previous inputs [43]. To decode the convolutional codes, 
the Viterbi algorithm was used. This algorithm uses a trellis representation of the encoder 
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state machine mapped along time axis. A metric, such as the Hamming distance, was used 
to select the most probable path, indicating the sequence of encoded bits, through a trellis. 

The rate 1/6 convolutional code, with constraint length 15, developed by the Jet Propul- 
sion Laboratory for the Mars Pathfinder Telemetry Link [63], was implemented using the 
Viterbi algorithm [64]. Note that there are several definitions of constraint length [65]; in 
this case, the constraint length is the number of information bits upon which each output 
bit depends. The payload of this code is 0.1666 bpp with an information rate of 0.0208 (48 
image bits to 1 information bit). This is a slight increase in rate compared to the ML code 
discussed previously, but decoding is much faster. 

To demonstrate decoder performance, a stegoimage constructed from the Eiger cover im- 
age with a stegosignal power of 80, shown in Figure 22, is used. The demodulated embedded 
signal extracted from the stegoimage has a BER of 0.23. Using the rate 1/6 convolutional 
code along with the Viterbi decoder, the BER is improved from 0.23 to 0.0117. Although 
this performance is favorable, it is possible for the Viterbi algorithm to perform even better 
with soft inputs. In general, soft-decision decoders outperform hard-decision decoders [43]. 
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Figure 22. Eiger Image, Original and Stegoimage. 

Forney showed that the Viterbi algorithm was a maximum-likelihood decoding algorithm 
for convolutional codes [66], meaning that the decoder output selected is always the code se- 
quence that gives the largest value of the log-likelihood function. The Viterbi algorithm uses 
the log of the likelihood ratio, shown in (75), as a metric to select the most probable encoded 
bit sequence. In (75), x represents the observation and Hx and H0 the hypotheses [67]. 

logL(x) = log (75) 

Each hypothesis represents the event that the source-generated one of two possible values. 
The values occur at the source with probability P0 and Px, respectively.  If the likelihood 
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ratio, L, is greater than the corresponding ratio of probability of occurrence for the generated 

values, 

L 
P{x\H1)     P0 

P{x\H0)      P/ 
(76) 

then we can decide that hypothesis Ht is true; otherwise, we decide that hypothesis H0 is 
true. When the source generated values are equally likely, P0 = Pi, Ht is selected if L is 
greater than 1. Because the logarithm is a monotonic function, taking the log of L results 
in an equivalent test. So, if the log-likelihood ratio for the given observation x is positive, 
we should decide in favor of P\; if negative, we decide in favor of HQ\ and if equal to 0, H\ 

and H0 are equally likely. 

Again, let us briefly look at the bipolar modulation system whose source generates two 
possible values, ±1, operating in AWGN with unit variance. The relationship between 
the conditional probability density functions for the value of the observation x given both 
hypotheses is exhibited in the graph of Figure 23. The log of the likelihood ratio as a function 
of x is shown in Figure 24. Notice that at x = 0, the hypotheses are equally likely and the 
corresponding log-likelihood ratio is 0. As x moves toward one of the generated values of -1 
or +1, the log-likelihood ratio decreases, or increases, respectively. 

Figure 23. Bipolar Modulation in AWGN. 

To ascertain the performance of soft-decision decoding for the SSIS system, it is necessary 
to calculate the likelihood ratio of the observed embedded signal to be used as input to our 
soft-decision Viterbi decoder. This task is not easily accomplished given that the SSIS gener- 
ated values at the source, themselves, are samples of a WGN process. Even the relationship 
between the possible modulated values is not constant (although the minimum distance has 
been determined in section 4.1.2). This being the case, we cannot look at the conditional 
distributions as we have for the bipolar modulation system. However, the generated source 
can be considered independently. 

43 



Figure 24. Bipolar Modulation in AWGN, Log-Likelihood Ratio. 

Remember that the SSIS system transmits the embedded signal, s, through a channel, 
the cover image. At the encoder, the embedded signal takes on one of two possible values, 
dependent upon the hidden message bit. If the hidden message bit is a 0, s0 is sent through 
the image and hypothesis H0 is true; otherwise, sx is sent and hypothesis Hi is true. At 
the decoder, an estimate of the embedded signal is recovered from the image. During the 
recovery process, the embedded signal has incurred distortion and is observed as s. Although 
5 ~ iV(0, a2) and varies with time, at a single instant in time (or space, as is the case with an 
image), we can observe the deviation of s from s and the encoder by simulating the decoder. 
By normalizing this observation, the conditional probabilities can be calculated for each 
hypothesis and used to determine the likelihood ratio. Furthermore, since the distortion in s 
is caused by the cover image functioning as a channel, conditional probabilities should vary 
with each image. 

Let us restate this through the following equations which represent the relevant SSIS 
encoder and decoder functions. The embedded signal, which has been modulated with the 
message bit, is added to the cover image, /, at the encoder to construct the stegoimage, h: 

h = f + s. (77) 

At the decoder, h is received, assuming a noiseless channel, and filtered with the channel 
estimation filter, denoted as T, in an effort to construct an estimate of the original cover 
image 

f = F{h) = F(f + s). (78) 
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The embedded signal is then recovered as 

s   =   h-F{h) (79) 

=   f + s-F(f + s) 

=   s + V, 

where 
V = f-F(f + s) = f-f (8°) 

is the distortion incident upon the embedded signal. Because / is constructed by filtering the 
stegoimage and is an approximation of the original cover image, / and / are highly correlated. 
It is known that the difference between two highly correlated sources (the stegoimage and 
restored stegoimage, in this case) can be represented by the double exponential, or Laplacian 
distribution, shown in (81) [44]. 

/*(*) = ^exp-l^l, (81) 

where a represents the mean of the distribution and the variance, <r2, is represented by 

a2 = 2A2. (82) 

Consequently, we attempt to model the distortion in J using this Laplacian distribution 
to generate the conditional probabilities needed to calculate the likelihood ratio. To consider 
the hypothesis that -1 was embedded, H0, we use the distribution of the deviation from the 
various values of 5 given that s0 was embedded, P(s — s0\H0). The variance of the conditional 
distribution is used to obtain the Laplacian parameter, A, using the relationship in (82), and 
the mean of our model, a, is set to 0 because the expected value of s — s0 is 0. 

Unfortunately, we do not have P(s - s0\H0) at the decoder, and thus we must estimate 
the value of A from the variance of the difference of the stegoimage and its filtered version, 
(/ — /), which we will call <T2,f_jy 

To illustrate the accuracy of our Laplacian model, we computed the actual distribution 
of P(s — sol-öo) for the Eiger80 image. The sample variance of the empirical distribution was 
then used to compute the Laplacian parameter, A, for the model. Lastly, A was estimated 
as it would be at the decoder using the stegoimage. Figure 25 illustrates the association 
between the actual distribution, the Laplacian model with the true lambda value calculated 
from the distribution, and the Laplacian model with estimated A that would be used at the 
decoder to evaluate the likelihood ratio. Figure 26 shows the error between the distribution 
and the model and the error between the distribution and the model using the estimated 
Laplacian parameter. 

As the embedded signal power a2
s is reduced, the error between the actual distribution 

and the estimated model is diminished. For instance, for the Eiger80 stegoimage, cr2f_jy the 

actual distribution variance is approximately 350 and &\h_;y the variance estimated from 
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the difference of stegoimage and its filtered version, is 406. When the stegoimage power is 
decreased to 40, the a\ A is decreased to 369. Hence, as the stegosignal power decreases, 

there is less distortion in our model. 

By using this Laplacian model to calculate the log-likelihood ratio as the soft input for the 
soft-decision Viterbi decoder for the Eiger80 stegoimage, the BER is reduced from 0.0117, 
for the hard-decision Viterbi decoder, to 0.0057, which is an improvement of 51%. 

4.3.4    Incorporation of Side Information 

While seeking to further enhance the coding performance to increase payload, we exam- 
ined the error map, which specifies the decoding error locations, at the decoder and detected 
a correlation between decoding errors and the edges within the image. It was then deter- 
mined that the most unreliable portion of the data occurred around the edges, where the 
channel estimation performed poorly. For instance, Figure 27 shows the error map for the 
Eiger80 stegoimage (white pixels representing decoding errors and black pixels indicating 
correct decoding). Notice many white pixels occur on the outline of the mountain Eiger, and 
if the error map is examined closely, one can even discern the window and roof line of the 
buildings in the foreground. Using this relationship, we can modify the soft-decision decoder 
to use edge information that has been extracted from the received stegoimage as channel 
side information to better correct bit errors. 

Figure 27. Error Map for Eiger Stegoimage. 

We apply this side information to both the hard- and soft-decoder input in a variety of 
ways. First we used an extracted edge map to signify erasures in the hard-decision data. 
Then in place of edge detection, we used the results of filtering the stegoimage with a 
variance filter (a filter that calculates the local variance or energy in a group of pixels) [68]. 
The variance filter indicates edge regions with high variance, while low values of variance 
are indicative of smooth (nonedge) regions. We used this variance information to weight the 
log-likelihood ratio. Finally, we used a priori information to create a probability of error 
from the hard-decision data for a given variance as soft-decision data. 
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4.3.4.1 Erasures. We began first by using the edge map to indicate erasures in our 
hard-decision data, as shown in the discrete channel depicted in Figure 28. 

0 » (no e<fee)    » o 

Hard-Decision ^^T~~^-—^-.  « ^   Soft-Decision 
(edge) J^9  0.5        ^ Input v^v— Output 

1 •■—~"^\ .   .     •   1 
(no edge) 

Figure 28. Erasure Channel. 

If an edge occurred at a particular location, the corresponding embedded signal bit is 
considered suspect and denoted as an erasure to a soft-decision decoder. Assuming that our 
bilevel message bits take on values of {0, +1} and by setting the received value of an erasure 
to 0.5, we indicate the event in which the bit is equal to 1 and the event in which the bit 
is 0 are equally likely. This knowledge is used by the decoder to select the most probable 
codeword given the nonerasure inputs for that particular block. These three possible values, 
0, 0.5, and 1, are then converted to the corresponding log-likelihood ratios (75) before input 
to the decoder using the following equation [69]: 

%i = logfe-1)- (83) 

The edge map is obtained by using edge-detection techniques such as thresholding the 
output of the stegoimage that has been filtered by Sobel operators for edge detection [68] or 
a local variance filter, 

1 x       Y 

<r2(x,y)= f2X + l)(2Y + l)   ^    ^   [f(x + m,y + n)-fi{x,y)]2, (84) 

where n{x,y) is equal to the local mean of the (2X + 1) x (2Y + 1) pixel window. For 
our system, a local neighborhood of size (2X + 1) = 3 and (2Y + 1) = 3 was used. If the 
variance in a particular pixel's local neighborhood is high, indicating an edge, there is a low 
probability that the demodulated embedded signal value in that location is dependable. On 
the other hand, if the local variance is low, reflecting a smooth region, the probability that 
the demodulated signal is correct is considerably higher. The objective of thresholding the 
output of the edge detection filter is to manufacture an approximation of the binary error 
map that was shown in Figure 27. 

Figure 29 shows the output of a local variance filter for the Eiger80 stegoimage along 
with the output of the variance filter that has been thresholded at three levels. The variance 
image has been scaled and equalized to properly depict the relationship of the local variance 
values. A hard threshold was applied to the variance image at the 50th, 75th, and 85th 
percentile to obtain the other binary images in the figure, which can be used as erasure 
maps to denote the locations of erasures. 

We can define the best-choice threshold as the threshold level at which the erasure map, 
the thresholded output of the edge detection filter, most resembles the error map. We search 
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for the best threshold value that gives a high probability of a hit, true detection of an 
error (85), and a high probability of a true negative, true detection of no error (86), while 
resulting in a low probability of a miss, false detection of no error (87), and a false alarm or 
false positive, false detection of an error (88). 

P{hU)    = Pieä^rc)    = f(ffjy ■ (85) 

tin 4-    \        D/i j    ii ^        P(\edgef)\error) 
P(true negative)   = Filedgey.error)   = =^ r . v ^ / v     * i i P([error) 

(86) 

of    •    \ on A    I ^        P(\edge[\error) 
P(miss)    = P([edge\error)    = —. r- . [ot) v        ; \     y  i / P(error) 

P (edge f][error) 
P(false alarm)    = P(edge\\error)    = p^error^ ■ (88) 

The best-choice threshold cannot be computed without knowledge of the actual error 
map, which is unknown to the decoder. However, it is possible to obtain this threshold 
value from the information available at the encoder by using the error map to search for 
the best-choice threshold using the aforementioned equations. Once found, the threshold 
can then be embedded within the stegoimage along with the hidden message and used to 
reconstruct the approximate error map from the edge data obtained at the decoder. The 
overhead costs incurred by including the threshold within the stegoimage would be minimal, 
although extra steps should be taken to assure that the threshold is accurately recovered. 

To keep our system consistently blind, an erasure map was constructed at the decoder 
by arbitrarily selecting a threshold for the variance image. In the case of the Eiger80 image, 
the use of side information at the decoder improved the BER from 0.0117 for hard-decision 
decoding to 0.007 for hard-decision decoding with erasures. However, we found that incon- 
sistent decoding performance resulted from arbitrary threshold selection. 

4.3.4.2 Variance Weights. To eliminate the thresholding issue encountered when 
using the edge map as erasure input, we decided to use the entire range of local variance 
measurements of the stegoimage to weigh the confidence of the log-likelihood ratio. Again, if 
the local variance of a pixel is high, the demodulated embedded signal value of that location 
is considered less reliable than that of a value whose location has a lower local variance. 

The soft-decision decoder input is formed by first filtering the stegoimage with a local 
variance filter to produce a2

x; a single index is used here for brevity. Each local variance value 
is then scaled to a percentage of the entire variance range for that image. These weights are 
used to weight the output of the log-likelihood estimator, //. The input for the soft-decision 
decoder is then 

y(x) = < (89) 
// + I   p-^n    1 * // 7/>0. 

'max       min 
„.2-2 

mm 
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For instance, if the local variance measurement at a specific location is 100% of the 
entire variance range, the log-likelihood ratio would be set to 0, reflecting the uncertainty of 
the demodulated embedded signal value. Conversely, if the local variance is close to 0, the 
weighted log-likelihood ratio is approximately equal to the unweighted log-likelihood ratio. 

After conducting simulations for several images and stegosignal power combinations, it 
was confirmed that the decoder performance utilizing side information via local variance 
weights with soft-decision decoding is more consistent than that of blind thresholding of 
edges for erasure inputs. When this side information technique was used for the decoding of 
the Eiger80 stegoimage, the soft-decision BER was reduced from 0.0057 to 0, total error-free 
recovery of the hidden data. This method operates completely blind, producing reliable 
results without a priori knowledge such as the threshold value needed for erasures. 

4.3.4.3 Probability of Error Given a Variance. Our best soft-decision performance 
obtained thus far was accomplished by using side information from the local variance that 
has been weighted by its true probability of error. This true probability of error is calculated 
for each 1% of the variance range by calculating the ratio of the number of errors that 
occurred in that range to the total number of locations in that variance range. For instance, 
if P(error\variance = v) is very high, it is likely that an error will occur in the location 
where the local variance is equal to v. 

This P(error\variance) relationship is used to influence the hard-decision data as soft 
input for the Viterbi decoder. Of course, this technique is not practical for implementa- 
tion because, again, the error map is not available at the decoder, but by calculating the 
P(error\variance) distribution for several images with similar characteristics (i.e., smooth 
sky, detailed foreground, etc.), a generalized table can be constructed. The table would then 
become an inherent object of the SSIS system and be used to assist the decoder in making 
the most use of side information extracted from the stegoimage. Using this procedure for 
the Eiger80 image, the decoder BER was decreased from 0.0117 for hard-decision decoding 
and from 0.007 for hard-decision decoding with erasures to 0. 

4.3.4.4 Comparison of Side Information Sources. To better compare these side 
information techniques, the Eiger cover image was used to generate stegoimages with a 
wide range of stegosignal powers, varying from 5 to 150 in steps of 5. For each of these 
30 stegoimages, we decoded using each of the techniques described previously. A graph 
illustrating the relationship of the decoder output BER to the steganographic SNR (Stego- 
SNR) is shown in Figure 30. Low SNR reflects low stegosignal power. As an aside, note that 
the Stego-SNR for the Eiger80 image is -15.226. 

From this graph, we can see that as the Stego-SNR is increased, the BER decreases for all 
decoder implementations. This result is intuitive, in that as the power of our signal becomes 
stronger, fewer bit errors should occur. Next we notice that when the Stego-SNR is very 
low, the BER value for all decoders approaches 0.5, indicating that the decoders are making 
decoding errors approximately one half of the time and are therefore providing no information 
about the embedded signal. As the stegosignal power is increased, the varying performance 
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Figure 30. Comparison of Side Information Techniques. 

of the different decoders is evident. The solid line represents the performance of the hard- 
decision Viterbi decoder without side information. The dashed line shows performance of the 
soft-decision decoding via the log-likelihood ratio and reflects an average increase in coding 
gain (over the hard-decision decoder) of 0.3 dB in Stego-SNR. The dotted line indicates 
the improvement obtained by using erasure side information to the Viterbi decoder with an 
average coding gain of 0.5 dB Stego-SNR. The dashed-dotted line illustrates the improvement 
of using the variance to weight the log-likelihood ratio, providing a coding gain of 1.3 dB 
Stego-SNR over hard-decision decoder. Finally, the best performance using generic tables 
of P(error\variance) for soft-decision decoding is represented by the asterisks. An average 
coding gain of 2.5 dB in Stego-SNR is achieved using the P(error\variance) as input to the 
soft-decision decoder. 

4.3.5    Turbo Codes 

We also investigated the performance of turbo codes, a recent development in error 
control [70, 71], in our system. Turbo codes, also known as parallel concatenated systematic 
convolutional codes that use two binary convolutional encoders and an interleaver, have been 
shown [70] to operate very close to Shannon's limit with reasonable decoding complexity. 

Figure 31 shows a simple diagram of the turbo code encoder using rate 1/3 convolutional 
encoders. The fundamental idea is to encode a message bit using the first encoder to generate 
3 bits, consisting of the message bit and 2 parity bits. The message bits are interleaved and 
used as input to the second encoder, producing an additional sets of 2 parity bits. Each 
code is systematic (the information bits are part of both encoded sequences); we need only 
to send one copy of the information. The received message and corresponding parity checks 
are then decoded via an iterative turbo decoder, as shown in Figure 32.  The decoder has 
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a soft-input /soft-output decoder for each of the encoders along with a deinterleaver. These 
decoders take turns operating on the received data, forming and exchanging estimates of the 

message bit [72]. 

m 
^ 

Convolutional 
Encoder #1 

Interleaver 

Convolutional 
Encoder #2 

* 
m, 

Figure 31. Turbo Coding Encoder. 

Soft In/Out 
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Interleaver Interleaver -1 

Soft In/Out 
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Figure 32. Turbo Coding Decoder. 

We used a decoder developed by Bahl, Cocke, Jelinek, and Raviv (BCJR) [73] whose 
performance is only slightly better than the Viterbi decoder but is optimized to correct for 
bit errors rather than frame errors. Additionally, this decoder produces soft output, which 
is necessary for the turbo code implementations. 

For our purposes, two rate 1/3 convolutional codes were selected along with a block 
interleaver to construct the turbo encoder, which has a composite rate of 1/5. The BCJR 
soft-input/soft-output decoders are used to implement an iterative turbo decoder. Table 3 
shows the iterative correcting performance of the turbo decoder for the Eiger stegoimage 
along with the embedded signal BER for four values of stegosignal power. The payload for 
a 256 x 256 image using this code is 1638 bytes (an information rate of 0.025), which is 
greater than the 1364-byte payload obtained using the rate 1/6 convolutional code with an 

information rate of 0.0208. 

For the Eiger80 image, the turbo decoder produced a message BER of 0.0105 while the 
rate 1/6 convolutional code using the hard-decision Viterbi decoder produced a BER of 
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Table 3. Iterative Turbo Decoder Performance. 

Stegosignal 
Power 

Stego 
SNR 

Embedded Signal 
BER 

Message BER for 
Number of Iterations 

1 2 3 4 
80 -15.2260 0.2345 0.0989 0.0343 0.0157 0.0105 
90 -14.7145 0.2292 0.0704 0.0069 0.0028 0.0030 
100 -14.2569 0.2229 0.0592 0.0047 0.0025 0.0025 
110 -13.8430 0.2155 0.0389 0.0013 0.0000 0.0000 

0.0117, both without the application of side information. Although the decoded message 
BER is comparable for these two coders, a higher payload is achieved with the turbo code 
whose information rate is 0.025 (40 image bits to 1 information bit) versus the information 
rate of 0.0208 (48 image bits to 1 information bit) for the hard-decision rate 1/6 convolutional 
code. 

Naturally, it may be possible to improve these results by using different convolutional 
codes selected from a search of good convolutional codes for turbo coding [74] and imple- 
menting a more sophisticated interleaver. However, the performance of this encoder/decoder 
exhibits the basic attributes of turbo coding within SSIS. 

4.3.6    Summary 

In this subsection, we have described the role of error control within SSIS and discussed 
the use of several codes and decoders that have been incorporated into the system. The 
correlation between edges in the image and decoding errors along with its use as channel 
side information, which we have used to improve the decoder BER, has been cited. Several 
methods of incorporating side information has been specified and compared. In addition, the 
error correction performance of a simple turbo code has been illustrated. Of the methods 
presented here, the rate 1/6 convolutional code using the soft-decision Viterbi algorithm 
weighted by the variance of the stegoimage satisfies the requirement for a target decoded 
message BER of 0 and operates in a completely blind fashion. 

For most cover images with an acceptable (in a steganographic sense) stegosignal power, 
the hidden message could not be recovered error free without the use of error correction. In 
fact, the ability to correct the recovered embedded signal permits the stegosignal to have the 
required low power. 

4.4    System Performance 

The purpose of this subsection is to demonstrate the performance of the SSIS algorithm 
and discuss issues that affect performance over noiseless and noisy transmission channels. In 
addition, we compare the SSIS payload to the theoretical capacity developed in section 3. 
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4.4.1    General Performance 

Six images with a variety of image characteristics are used to demonstrate the perfor- 
mance of SSIS. The original digital 256 x 256 images, each containing 64 kilobytes, appear 
in Figure 33. The Barbara and Lena images are commonly used in the image processing 
community. These are subsampled from the original 512 x 512 images. The Lena image 
has some high-frequency regions around the feathers in her hat, along with some smooth 
regions on her face and shoulder. The Barbara image exhibits several high-frequency areas 
reflected in the regions with diagonal lines. The Castle, Eiger, and Ulm images* represent 
typical scenic images with a horizon, smooth sky, and detailed foreground. The Castle image 
is a picture of the Neuschwanstein castle in Bavaria; the Eiger image (used in the previous 
subsections) is the north face of the Eiger, taken from Kleine Scheidegg, Switzerland; and 
the Ulm image is a picturesque view of Ulm taken from the Danube in Germany. Our last 
test image is the Tank image, which contains a LAV-25 light armored vehicle followed by an 
M-551A1 Sheridan armored reconnaissance vehicle in Saudi Arabia. The image was taken 
in January 1991 by SGT Nathan Webster and obtained by the author from the U.S. Army 
web site. It has a significant amount of smooth area with hills of sand in the foreground and 
detailed items in both the mid- and background. 

Thirty stegoimages were generated using the SSIS encoder for each of our six test images, 
with stegopower varying from 5 to 150, by steps of 5. The encoder used the piecewise 
linear modulation technique described in section 4.1.2 and the alpha-trimmed mean filter of 
section 4.2.2.2 for channel estimation. Figure 34 shows a graph displaying the relationship 
between the Stego-SNR and the embedded signal BER for each image. All graphs illustrate 
the general trend of decreasing BER for increasing Stego-SNR. Note that because the images 
have different characteristics, the specific values of embedded signal BER and corresponding 
Stego-SNR differ for each image. 

From this data, we can get a sense of the steganographic capabilities of each image. 
Basically, if the embedded signal BER is relatively low (steganographically speaking, less 
than 0.22 or so) and the corresponding Stego-SNR is low (less than, say, 20 dB), the image 
is a good candidate for steganography. 

To present the effectiveness of the incorporation of side information in the error-control 
decoder, we have constructed plots for each test image displaying the decoder BER over the 
range of applicable Stego-SNR. These plots are shown in Figure 35 for the rate 1/6 code 
discussed in section 4.3.3. The code enables a payload of 1364 bytes for images of this size. 
As we mention previously, any error-control code that is capable of correcting the embedded 
signal BER can be used — if higher rate codes can be used, the payload amount will increase 
accordingly. 

*The Castle, Eiger, and Ulm images are provided courtesy of Dr. Charles Retter, U.S. Army Research 
Laboratory. 
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Figure 33. Original Test Images. 
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Figure 34. Embedded Signal BER. 
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4.4.2    Performance for a Fixed Payload 

To compare the quality of the stegoimages and view the degradation caused by embedding 
a hidden message, it is necessary to look at images with a specific payload size. Fixing 
the payload is equivalent to specifying an embedded signal BER because the payload is 
determined by the ECC, which in turn has been selected to correct a specific level of BER. 

Here, we compare stegoimages that have an embedded signal BER between the values 
of 0.21 and 0.22. For each test image, the stegosignal power has been adjusted to achieve 
an embedded signal BER in this range. The stegosignal power required to accomplish this 
goal varied with each image. For the Tank and Ulm images, a stegosignal power of 20 was 
needed to achieve embedded signal BER values of 0.2141 and 0.2079 with Stego-SNR values 
of -24.72 and -24.39, respectively. To obtain this level of embedded signal BER from the 
Barbara image, a stegopower value of 90, resulting in a Stego-SNR of -13.94, is required. 
Similar stegopower and Stego-SNR values are obtained for the Eiger and Castle images. 
Figure 36 displays the stegoimages along with the various stegopowers that are necessary to 
achieve an embedded signal BER between 0.22 and 0.21. 

Since the BER is equivalent, all of these stegoimages require the same level of error 
correction and, therefore, carry an identical amount of payload. However, as one can see 
from the stegoimages, the image quality of the stegoimage compared to the original image 
varies. Since the stegosignal consists of AWGN, some of the test images look noisy depending 
on the image characteristics. For instance, the stegosignal is readily apparent in the sky of 
the Castle image because of its high power value, 120. However, even with a stegosignal 
power of 90, the presence of the stegosignal in the Barbara image is not obvious because of 
the amount of variation within the image. Yet the stegosignal, whose power is 110, is vaguely 
noticeable in the Eiger image. In the Lena and Tank image, the signal power is low and 
the stegoimages look fairly close to the original. Arguably, the best stegoimage is the Ulm 
stegoimage. There are just enough smooth areas in this image for the channel estimation to 
perform well, but also enough variation within that smooth area to help disguise the presence 
of the stegosignal. The MSE of the original image to the stegoimage is approximately equal 
to the noted stegosignal power. 

4.4.3    Clipping 

It is possible that many more decoding errors may occur for some cover images that have 
a large number of pixels lying at extreme colormap values, near 0 and 255 for grayscale, than 
for those which have a more centralized histogram. These errors occur when the addition 
of the stegosignal to the pixel value causes the stegoimage pixels to saturate the colormap. 
These values must then be truncated, or clipped, so that the stegoimage pixels are within 
the acceptable dynamic range of the colormap. This clipping may cause some or all of 
the embedded signal information to be lost. A grayscale stegoimage containing pixels with 
negative values or values greater than 255 would surely alert the suspicious observer, and 
thus defeat our goal of operating in a stealthy manner. Of course, the stegosignal power is 
also a factor to the degree at which clipping affects the embedded signal BER. When the 
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Figure 36. Stegoimages with Embedded Signal BER « 0.22. 
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stegosignal power is not great enough to cause saturation or the histogram is centralized, 
clipping may not be an issue. 

Take, for instance, the Castle and Tank images, whose histograms are shown in Figure 37. 
Both images have similar histograms and comparably low values for a majority of the pixel 
range, but each has a substantial peak near colormap saturation, 255. 

|   0.02 

Castle Tank 

Figure 37. Original Image Histograms. 

The stegosignal power needed to attain an embedded signal BER of approximately 0.22, 
thereby achieving a constant payload, is 120 for the Castle image and 20 for the Tank image. 
The large stegosignal power for the Castle stegoimage causes 4,468 pixels, approximately 
7.1%, to be saturated. The relatively low stegosignal power of 20 for the Tank stegoimage 
causes less than 1.9% of the pixel values to be saturated. Consequently, clipping is a more 
significant factor in the Castle stegoimage than the Tank stegoimage. 

4.4.4    Variations in Transmission Channel 

Throughout this report, results have been presented for the the noiseless transmission 
channel. Subsequently, the only noise incident upon the embedded signal is that caused by 
the cover image. This noiseless channel operation is reasonable when images are transmitted 
in a lossless fashion over today's reliable wired networks. Let us now consider the case where 
the embedded signal may be corrupted by other noise sources such as that of a wireless 
channel or the noise caused by lossy image compression. 

4.4.4.1 Additive Channel Noise. Many SSIS stegoimages can be made resistant to 
low levels of additive noise by selecting the proper stegopower and coding. To demonstrate 
this resistance, we generated an Ulm stegoimage using a stegosignal power of 80 and added 
various levels of white Gaussian noise. This added noise is independent of the embedded 
signal and simulates a noisy transmission channel. As a baseline for performance comparison, 
the noiseless channel transmission of this stegoimage yields an embedded signal BER of 
0.1515. 
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The Ulm stegoimage along with stegoimages that have been corrupted with AWGN with 
powers of 10, 20, and 30 are shown in Figure 38. All stegoimages have been decoded with 
the standard SSIS decoder using hard-decision decoding without side information. When 
adding transmission channel noise with a power of 10, the embedded signal BER is increased 
from 0.1515 to 0.1840. This increase is still within the acceptable BER range for the 1/6 rate 
convolutional code, which would correct this BER to 0. The channel noise power introduced 
in the next image has an increased power of 20, causing the embedded signal BER to increase 
to 0.2094 — still within the BER range for this code. However, when the additive noise 
power is increased to 30, the resulting embedded signal BER becomes 0.2312 and the decoded 
message BER increases from 0 to 0.003542. Consequently, a more powerful code, soft-decision 
decoding, a decoder incorporating side information, or an increase in stegosignal power must 
be used to achieve error-free message recovery at this level of transmission channel noise. 

■Is 

Ulm80 Stegoimage UIm80, AWGN Power = 10 

Ulm80, AWGN Power = 20 Ulm80, AWGN Power = 30 

Figure 38. Stegoimage Exposed to AWGN Channel. 
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4.4.4.2 Noise Caused by Lossy Image Compression. A stegoimage may also be 
made resistant to noise caused by low levels of lossy image compression. JPEG compression 
was used with various Q-factors. Q-factor is indicative of the amount of compression per- 
formed and the quality of the compressed image. For instance, JPEG compression with a 
high Q-factor would result in a good quality image that has little compression. As the Q- 
factor is reduced, the amount of compression increases while the quality of the compressed 
image decreases. Using the same Ulm80 stegoimage, we applied JPEG compression with 
a Q-factor of 95, resulting in a 4.43-bpp compressed image; the decompressed stegoimage 
is displayed in Figure 39. After decompression at the decoder, the embedded signal BER 
is 0.1671, an increase in BER from 0.1515 without compression noise, which is within the 
acceptable BER for the rate 1/6 convolutional ECC. By decreasing the Q-factor to 90, a 
3.30-bpp compressed image is produced, and the embedded signal BER from the decom- 
pressed stegoimage increases to 0.2057 — still within the acceptable level for this ECC. 
When the Q-factor is again decreased to 85, yielding a 2.64-bpp compressed image, the re- 
sulting embedded signal BER is 0.2583 (above the BER capability of the rate 1/6 code). 
This is reflected in the 0.0686 message BER produced by the SSIS decoder. Finally, when 
the Q-factor is decreased once more to 80, providing a 2.21-bpp compressed image, the em- 
bedded signal BER increases to 0.3001 and is well beyond the capabilities of this ECC. In 
this case, the (2040,32) binary expansion of the RS code could be used since it can correct 
a BER of approximately 0.35 at the expense of payload. Alternatively, the use of other 
decoders with soft-decision decoding and/or side information or an increase in stegosignal 
power must be investigated to combat this level of noise. 

Figure 39. Decompressed Stegoimage. 

As an aside, it should be noted that the sender of the stegoimage selects the format in 
which the stegoimage is transferred to the recipient. Therefore, if a compressed image is 
necessary so as hot to arouse suspicion from observers, the compression parameters could be 
chosen in such a way that acceptable SSIS performance is guaranteed. 
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4.4.5 Comparison with Capacity 

In section 3, we introduce a generic theory of additive steganographic capacity. The 
steganographic capacity is a function of the power of the noise resulting from the channel, 
the entropy of the channel, and the power of the stegosignal. For image steganography, 
the entropy of the channel is estimated using the state-of-the-art lossless image compression 
technique, CALIC. 

For each of our six test images, the steganographic capacity is compared to the perfor- 
mance of the SSIS algorithm using hard-decision decoding without side information. Fig- 
ure 40 shows the relationship of the upper, lower, and Gaussian bounds on capacity to the 
performance of the SSIS system. Notice that the SSIS performance occurs in discrete steps. 
These discrete steps occur because of the fixed number of codes used to provide error cor- 
rection. As a wider range of codes is added to the system, the discrete characteristic of 
the SSIS performance will diminish. For most of our images, the performance of the SSIS 
system falls between the upper and lower capacity bounds, thereby establishing a new lower 
capacity bound for these images. In the graph for the Eiger cover image, notice that the 
SSIS performance is close to the upper capacity bound for values of high Stego-SNR. 

4.4.6 Summary 

In this subsection, we have demonstrated the performance of the SSIS algorithm using 
six different test images. The relationship between BER and stegosignal power has been es- 
tablished along with the aspects of varying image quality for a fixed payload. Additionally, 
clipping and transmission channel noise have been addressed as issues that affect perfor- 
mance. Finally, bounds for image steganographic capacity were calculated and compared 
to SSIS performance. For all but one of our test images, SSIS performance fell within the 
upper and lower bounds of theoretical capacity estimates. 

4.5    Summary of Section 

In this section, we have presented a novel technique to embed information within digital 
images that provides a high probability of error-free recovery. We have presented a piecewise 
linear modulation technique that provides increased detection performance of the hidden data 
at the receiver. Additionally, we have presented results that support our conjecture that the 
technique maximizes the minimum distance between modulation points, while adhering to 
the stochastic constraints of producing a stegosignal with a Gaussian distribution for message 
concealment. Channel estimation via image restoration has been used to facilitate blind 
embedded signal recovery, and two specific methods have been compared. Error control, 
which is vital to the functionality of the our system, has been discussed, and several types 
of codes have been presented. The use of channel side information to improve decoder 
performance has also been demonstrated. Finally, to provide an example of the tradeoffs 
among system parameters, the performance of the SSIS system has been demonstrated for 
several images. 
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Figure 40. SSIS Performance Compared to Steganographic Capacity Bounds. 
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5.    Conclusions 

Steganography's primary objectives — imperceptibility, removal resistance, and capacity 
— are in conflict. It is not possible to achieve optimal levels of all three simultaneously. 
Consequently, tradeoffs between them must be dictated by the application. For data hiding, 
the effort is concentrated on achieving high levels of imperceptibility and capacity while 
sacrificing resistance. 

Since much of the current communication occurs digitally, new data-hiding methods 
for digital cover media are being investigated. Applications for data hiding are numerous. 
They include in-band captioning, forward/backward compatibility, authentication, and, of 
course, hidden communication. For many of the new techniques, quantitative measurements 
of success do not exist, particularly in terms of capacity and imperceptibility. We have 
developed such a metric for a class of data-hiding methods, along with a novel data-hiding 
technique that can provide perfect recovery of the hidden data. 

5.1    Contributions 

In this report, we have approached the problem of steganographic communication as we 
would a typical communication problem comprising a transmitter, a receiver, and a channel. 
Modulation techniques are needed to convey the information; detection techniques are re- 
quired at the receiver for signal recovery; and, if the channel is noisy and the signal recovered 
in error, error control is essential. Finally, metrics are necessary to quantify performance. 

To this end, we have derived, from Shannon's information theory, a measure of additive 
steganographic channel capacity. The capacity can be used to gauge the performance of 
the class of steganographic techniques that embed information by adding it to the cover 
signal. Previous to this work, the capacity metric generally accepted by the steganographic 
community was that of the Gaussian channel, a measure that significantly understates a 
steganographic channel's true capacity. We have also presented a process to estimate the 
capacity of an image steganography system by computing capacity bounds using an estimate 
of the image entropy. 

We have developed a complete image steganographic strategy for the purpose of data 
hiding. The primary objective of this system was to embed as much data into an image as 
possible and provide its reliable recovery without requiring the receiver to have the cover 
information. This method combined spread spectrum techniques, channel estimation, and 
error control to communicate hidden information using an image while concealing its exis- 
tence from the human visual system and computer analysis. 

Steganographic principles dictate that the information signal must have low power in 
comparison to the communication channel to promote stealthy communication. Also, with- 
out perfect knowledge of the channel, the detection of the low power signal carrying the 
hidden data is subject to distortion. A new modulation technique for obscure communica- 
tion, called piecewise linear modulation, was created to provide a low power signal that is 
perceived as a type of noise that commonly exists in digital images. The use of this modu- 
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lation technique provides a minimum distance that varies proportionally to the stegosignal 
power, which can be adjusted to achieve better detection without sacrificing payload. 

We have investigated several image processing techniques to better estimate our channel 
and have selected one that promotes reduction of the recovered embedded signal error. 
To combat the residual error in the hidden data, we have employed error-control codes to 
correct them. Procedures have been sought to improve error-control performance because 
its incorporation reduced the payload. In doing so, we have discovered that channel side 
information could be extracted from the stegoimage and used to assist the decoder with 
correcting errors. The performance of the SSIS system has been exhibited for six test images 
and compared to the theoretical channel capacity bounds. 

Although piecewise linear modulation was developed as a component of our steganogra- 
phy system, we have found that it could function independently as a general purpose method 
of hidden communication. The goals of piecewise linear modulation were to modulate a bi- 
nary signal to produce an output that mimics low-power, thermal, Gaussian noise. This 
output could then be transmitted to a recipient where the binary signal could be recov- 
ered. Since the output signal may incur distortion in transit, modulation values must have 
a large minimum distance while adhering to the Gaussian stochastic constraint to achieve 
accurate detection. We have used basic probability theory to reduce this formidable problem 
to one that could be easily perceived by exploiting the relationship between the uniform and 
Gaussian distributions. In section 4.1.2 of section 4, it has been shown that the piecewise 
linear modulation was optimal in maximizing the minimum distance in the uniform domain. 
Empirical data to support our conjecture that this relationship held in the Gaussian domain 
have also been presented. 

5.2    Future Work 

All of the concepts presented in this report could, with relative ease, be extended to 
construct steganographic systems for a variety of cover signals that possess high correlation 
among neighboring samples. Audio, video, and color imagery signals are a few of the nu- 
merous possibilities that come immediately to mind. The SSIS system, as presented here, 
is ripe for implementation and could function as a general purpose data-hiding technique to 
embed information within digital grayscale imagery. 

The comparison of our system performance with our established theoretical stegano- 
graphic bounds demonstrates that there may be more throughput to be obtained for some 
cover images. Modulation, channel estimation, and coding theory should be further exploited 
so users of steganography may gain from this potential increase in payload. Additionally, it 
would be beneficial to improve the estimate of image entropy to more accurately measure 
capacity. 

Of course, it is important to consider the opposing side to steganography — the detection, 
attack, and possible decoding of the hidden information. This new and challenging area of 
research is referred to by the "stegocommunity" as stegoanalysis. The relationship between 
steganographer and stegoanalyzer is reminiscent of the that between the cryptographer and 
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the code breaker. The steganographer strives to perfect methods to conceal the existence of 
information, and the stegoanalyzer endeavors to destroy them or, at the least, render them 
ineffective. Each side is encouraged to further the technology by the pursuit of the other. 
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